JavaScript Summary

What you need to know about JavaScript

Publication date: 8 November 2015

A short summary of JavaScript's main features, including a discussion of the different kinds of
JS objects, basic data structures, functions as first class citizens, and code patterns for imple-
menting classes.

By Gerd Wagner
web-engineering.info

Copyright 2015, Gerd Wagner. This article is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License. Available online at http://web-engineering.info/
SummariesCheatsheetsPosters.

Contents

¢ INETOAUCTION ..ttt ettt ettt et ettt e e bt et seee b entea 1
o Types and Data LIteralSc.ceciiriieiiiiiieiiieie et e 2
® Variable SCOPE .oouvviieiieiie ettt ettt et et e b et ebe e aaeenbeeneas 4
& SHIICT IMIOAE. ..ttt a et ettt et nae et 4
* Different Kinds 0f ODJECES......cocuiiriiiiiiiiieeiiecie ettt et 5
© ATTAY LSS 1eoiiiiieiie ettt ettt ettt ettt eb e tt e et e e taeenb e e teeenbeenaaeenbeeneas 6
L\, o OO 6
* Four Types of Basic Data StrUCTUIEScocveriieiieiieeiieeie ettt 7
e Methods and FUNCLIONSc..coouiiiiiiiiiiiietee e s 8
* Defining and USING ClasSSESc.eevuiieiierieeiiieiieeiieniie et eeite et eseteereesiaeebeessaesseessnesnseenenas 9

o ConStructor-based CLASSESeoeeriiriiirieiieie et 11

© Factory-Dased ClasSeS.......ccueuvuieriiiriieiiieeieeiie ettt ettt e s eene 13
 JavaScript as an Object-Oriented Languagecccveviieiiieiiienienieeieeeee e 14
o The LocalStorage APL.........cooi it 14
* Further Reading about JAVASCIIPL......c.ccvuiiiiiiiiieiieiece e e 15

1 Introduction history). Brendan Eich said (at the O'Reilly

JavaScript was developed in 10 days in May Fluent conference in San Francisco in April

1995 by Brendan EiCh, then WOI'kiIlg at 2015) "T did JavaScript in such a hurry, I
never dreamed it would become the assem-

Netscape, as the HTML scripting language
bly language for the Web".

for their browser Navigator 2 (more about

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://web-engineering.info
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://web-engineering.info/SummariesCheatsheetsPosters
http://web-engineering.info/SummariesCheatsheetsPosters
http://en.wikipedia.org/wiki/Brendan_Eich
http://en.wikipedia.org/wiki/Netscape
http://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

Types and Data Literals

JavaScript is a dynamic functional object-ori-
ented programming language that can be used
for

1. Enriching a web page by

» generating browser-specific HTML
content or CSS styling,

* inserting dynamic HTML content,

» producing special audio-visual effects
(animations).

2. Enriching a web user interface by

* implementing advanced user interface
components,

» validating user input on the client
side,

» automatically pre-filling certain form
fields.

3. Implementing a front-end web application
with local or remote data storage, as de-
scribed in the book Building Front-End
Web Apps with Plain JavaScript.

4. Implementing a front-end component for
a distributed web application with remote
data storage managed by a back-end com-
ponent, which is a server-side program
that is traditionally written in a server-side
language such as PHP, Java or C#, but can
nowadays also be written in JavaScript
with NodeJS.

5. Implementing a complete distributed web
application where both the front-end and
the back-end components are JavaScript
programs.

The version of JavaScript that is currently
supported by web browsers is called "EC-
MAScript 5.1", or simply "ES5", but the next
two versions, called "ES6" and "ES7" (or "ES
2015" and "ES 2016", as new versions are
planned on a yearly basis), with lots of added
functionality and improved syntaxes, are
around the corner (and already partially sup-
ported by current browsers and back-end JS
environments).

This article has been extracted from the
book Building Front-End Web Apps with
Plain JavaScript, which is available as an open
access online book. It tries to take all impor-

tant points of the classical JavaScript summa-
ry by Douglas Crockford into consideration.

2 Types and Data Literals

JavaScript has three primitive data types:
string, number and boolean, and we can test
if a variable v holds a value of such a type
with the help of typeof (v) as, for instance, in
typeof (v)==="number".

There are five basic reference types:
Object, Array, Function, Date and RegExp. Ar-
rays and functions are just special kinds of ob-
jects, but, conceptually, dates and regular ex-
pressions are primitive data values, and hap-
pen to be implemented in the form of wrapper
objects.

The types of variables, array elements,
function parameters and return values are not
declared and are normally not checked by
JavaScript engines. Type conversion (casting)
is performed automatically.

The value of a variable may be

1. a data value: either a string, a number, or
a boolean;

2. an object reference: either referencing an
ordinary object, or an array, function,
date, or regular expression;

3. the special data value nui1, which is typ-
ically used as a default value for initializ-
ing an object variable;

4. the special data value undefined, which is
the implicit initial value of all variables
that have been declared but not initialized.

A string is a sequence of Unicode characters.
String literals, like "Hello world!", 'A3F0', or
the empty string "", are enclosed in single or
double quotes. Two string expressions can be
concatenated with the + operator, and checked
for equality with the triple equality operator:

if (firstName + lastName === "James Bond") ...

The number of characters of a string can be
obtained by applying the 1ength attribute to a
string:

/] 12

console.log("Hello world!".length);

All numeric data values are represented in
64-bit floating point format with an optional
exponent (like in the numeric data literal

http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book
http://javascript.crockford.com/survey.html
http://javascript.crockford.com/survey.html
http://www.crockford.com/

Types and Data Literals

3.1e10). There is no explicit type distinction
between integers and floating point numbers.
If a numeric expression cannot be evaluated to
a number, its value is set to nan ("not a num-
ber"), which can be tested with the built-in
predicate isNaN (expr).

Unfortunately, a built-in function,
Number.isInteger, for testing if a number is
an integer has only been introduced in ES6,
so a polyfill is needed for using it in browsers
that do not yet support it. For making sure
that a numeric value is an integer, or that a
string representing a number is converted to
an integer, one has to apply the predefined
function parseint. Similarly, a string repre-
senting a decimal number can be converted to
this number with parserioat. For converting
a number n to a string, the best method is us-
ing String(n).

Like in Java, there are two pre-defined
Boolean data literals, true and false, and the
Boolean operator symbols are the exclamation
mark ! for NOT, the double ampersand ss for
AND, and the double bar || for OR. When
a non-Boolean value is used in a condition,
or as an operand of a Boolean expression, it
is implicitly converted into a Boolean value
according to the following rules. The empty
string, the (numerical) data literal 0, as well as
undefined and null, are mapped to false, and
all other values are mapped to true. This con-
version can be performed explicitly with the
help of the double negation operation ! !.

In addition to strings, numbers and
Boolean values, also calendar dates and times
are important types of primitive data values,
although they are not implemented as prim-
itive values, but in the form of wrapper ob-
jects instantiating pate. Notice that pate ob-
jects do, in fact, not really represent dates, but

rather date-time instants represented internal-
ly as the number of milliseconds since 1 Jan-
uary, 1970 UTC. For converting the internal
value of a pate object to a human-readable
string, we have several options. The two most
important options are using either the stan-
dard format of ISO date/time strings of the
form "2015-01-27", or the format of localized
date/time strings like "27.1.2015" (for sim-
plicity, we have omitted the time part of the
date/time strings in these examples). When x
instanceof Date, then x.toISOString () Pro-
vides the ISO date/time string, and
x.toLocaleDatestring () provides the local-
ized date/time string. Given any date string ds,
ISO or localized, new Date (ds) creates a cor-
responding date object.

For equality and inequality testing, al-
ways use the triple equality symbols === and
1==instead of the double equality symbols ==
and '=. Otherwise, for instance, the number
2 would be the same as the string "2", since
the condition (2 == "2") evaluates to true in
JavaScript.

Assigning an empty array literal, as in
[1 is the same as, but more concise
than and therefore preferred to, invoking the
Array () constructor without arguments, as in

var a =

var a = new Array().

Assigning an empty object literal, as in
{} 1s the same as, but more concise
than and therefore preferred to, invoking the
Object () constructor without arguments, as in
new Object (). Notice, however, that
an empty object literal {} is not really emp-
ty, as it contains property slots and method
slots inherited from object.prototype. S0, a
truly empty object (without any slots) has to
be created with nu11 as prototype, like in var
emptyObject =

var o =

var o =

Object.create (null).

Table 1: Type testing

Type Example values Test if x of type
string "Hello WOI'ld!", 'A3F0' typeof (x)==="string"
boolean true, false typeof (x) ==="boolean"

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype

Variable Scope

Type Example values Test if x of type
(floating
point) num-|-2.75, 0, 1, 1.0, 3.1e10 typeof (x) ==="number"
ber
integer -2,0,1, 250 Number.isInteger (x) "
excluding nuii: x
Object {}," {nurp:3, den0n1":4}," {is'k')n:"'(')062':515§7X,"" ti- instanceof Object
tle:"Weaving the Web"}, {"one":1, "two":2, "three":3} including null:
typeof (x) === "object"
Array [1, ["one"], [1,2,3], [1,"one", {}] Array.isArray (x)
Function function () { return "one"+1;} typeof (x)==="function"
Date new Date("2015-01-27") x instanceof Date
RegExp / (\w+) \s (\w+) / x instanceof RegExp
Table 2: Type conversions
Type Convert to string Convert string to type
boolean String (x) Boolean (y)
(floating point) number |string (x) parseFloat (y)
integer String (x) parselnt (y)
Object x.toString () O JSON.stringify (x) |JSON.parse (y)
Array x.toString () OF JSON.stringify(x) |y.split() OF JSON.parse (y)
Function x.toString () new Function (y)
Date X.toISOString() new Date (y)
RegExp x.toString () new RegExp (y)

3 Variable Scope

In the current version of JavaScript, ESS5,
there are only two kinds of scope for vari-
ables: the global scope (with window as the
context object) and function scope, but no
block scope. Consequently, declaring a vari-
able within a block is confusing and should
be avoided. For instance, although this is a
frequently used pattern, even by experienced
JavaScript programmers, it is a pitfall to de-
clare the counter variable of a for loop in the
loop, as in

function foo () {
for (var i=0; 1 < 10; i++) {
// do something with 1
}
}

Instead, and this is exactly how JavaScript is
interpreting this code (by means of "hoisting"
variable declarations), we should write:

function foo() {
var i=0;
for (i=0; i < 10; 1i++) {
// do something with i
}
}

All variables should be declared at the begin-
ning of a function. Only in the next version of
JavaScript, ES6, block scope will be support-
ed by means of a new form of variable decla-
ration with the keyword 1et.

4 Strict Mode

Starting from ES5, we can use strict mode for
getting more runtime error checking. For in-

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
http://speakingjs.com/es5/ch07.html#strict_mode

Different Kinds of Objects

stance, in strict mode, all variables must be
declared. An assignment to an undeclared
variable throws an exception.

We can turn strict mode on by typing the
following statement as the first line in a
JavaScript file or inside a <script> element:

'use strict';

It is generally recommended that you use
strict mode, except your code depends on li-
braries that are incompatible with strict mode.

5 Different Kinds of Objects

JS objects are different from classical OO/
UML objects. In particular, they need not in-
stantiate a class. And they can have their own
(instance-level) methods in the form of
method slots, so they do not only have (ordi-
nary) property slots, but also method slots. In
addition they may also have key-value slots.
So, they may have three different kinds of
slots, while classical objects only have prop-
erty slots.

A JS object is essentially a set of name-
value-pairs, also called slofs, where names
can be property names, function names or keys
of a map. Objects can be created in an ad-hoc
manner, using JavaScript's object literal nota-
tion (JSON), without instantiating a class:

{ firstName:"Tom",
lastName:"Smith"};

var personl =

Whenever the name in a slot is an admissible
JavaScript identifier, the slot may be either
a property slot, a method slot or a key-value
slot. Otherwise, if the name is some other type
of string (in particular when it contains any
blank space), then the slot represents a key-
value slot, which is a map element, as ex-
plained below.

The name in a property slot may denote
either

1. a data-valued property, in which case the
value is a data value or, more generally, a
data-valued expression; or

2. an object-valued property, in which case
the value is an object reference or, more
generally, an object expression.

The name in a method slot denotes a JS func-
tion (better called method), and its value is a
JS function definition expression.

Object properties can be accessed in two
ways:

1. Using the dot notation (like in C++/Java):

personl.lastName = "Smith"

2. Using a map notation:

personl["lastName"] = "Smith"

JS objects can be used in many different ways
for different purposes. Here are five different
use cases for, or possible meanings of, JS ob-
jects:

1. A record is a set of property slots like, for
instance,

var myRecord = { firstName:"Tom",
lastName:"Smith", age:26}

2. A map (also called 'associative array',
'dictionary', 'hash map' or 'hash table' in
other languages) supports look-ups of val-
ues based on keys like, for instance,

var numeral2number = {"one":"1",
"tWO":"z", llthree":"3"}

which associates the value "1" with the
key "one", "2" with "two", etc. A key need
not be a valid JavaScript identifier, but
can be any kind of string (e.g. it may con-
tain blank spaces).

3. An untyped object does not instantiate a
class. It may have property slots and
method slots like, for instance,

var personl = {

lastName: "Smith",
firstName: "Tom",
getFullName: function () {

return this.firstName +" "+
this.lastName;
};}
Within the body of a method slot of an ob-
ject, the special variable this refers to the
object.

4. A namespace may be defined in the form
of an untyped object referenced by a glob-
al object variable, the name of which rep-
resents a namespace prefix. For instance,
the following object variable provides the
main namespace of an application based
on the Model-View-Controller (MVC) ar-

http://mothereff.in/js-variables
http://mothereff.in/js-variables

Array Lists

chitecture paradigm where we have three
sub-namespaces corresponding to the
three parts of an MVC application:

var myApp = { model:{},
view:{}, ctrl:{} };

A more advanced namespace mechanism
can be obtained by using an immediately
invoked JS function expression, as ex-
plained below.

5. A typed object instantiates a class that is
defined either by a JavaScript constructor
function or by a factory object. See the
section Defining and using classes below

6 Array Lists

A JavaScript array represents, in fact, the log-
ical data structure of an array list, which is a
list where each list item can be accessed via
an index number (like the elements of an ar-
ray). Using the term 'array' without saying 'JS
array' creates a terminological ambiguity. But
for simplicity, we will sometimes just say 'ar-
ray' instead of 'JS array'.

A variable may be initialized with a
JavaScript array literal:

var a = [1,2,3];

Because they are array lists, JS arrays can
grow dynamically: it is possible to use index-
es that are greater than the length of the array.
For instance, after the array variable initializa-
tion above, the array held by the variable a has
the length 3, but still we can assign a fifth ar-
ray element like in

al4] = 7;

The contents of an array a are processed with
the help of a standard for loop with a counter
variable counting from the first array index 0
to the last array index, which is a.1ength-1:

(i=0; i++) { ...}

for i < a.length;

Since arrays are special types of objects, we
sometimes need a method for finding out if
a variable represents an array. We can test,
if a variable a represents an array with
Array.isArray(a).

For adding a new element to an array, we
append it to the array using the push operation
as in:

a.push(newElement) ;

For deleting an element at position i from an
array a, we use the pre-defined array method
splice as in:

a.splice(i, 1);

For searching a value v in an array a, we
can use the pre-defined array method indexof,
which returns the position, if found, or -1, oth-
erwise, as in:

if (a.indexOf (v) > -1)

For looping over an array a, we have two op-
tions: either use a for loop, or the array loop-
ing method foreach. In any case, we can use a
for loop:

var 1=0;
for (i=0; i < a.length;
console.log(alil):

}

i++) |

If performance doesn't matter, that is, if a is
sufficiently small (say, it does not contain
more than a few hundred elements), we can
use the array looping method foreach, as in
the following example, where the parameter
elen iteratively assumes each element of the
array a as its value:

a.forEach(function (elem) {
console.log(elem);
3]
For cloning an array a, we can use the array
function s1ice in the following way:

var clone = a.slice(0);

7 Maps

A map (also called 'hash map' or 'associative
array') provides a mapping from keys to their
associated values. The keys of a JS map are
string literals that may include blank spaces
like in:

var myTranslation = {
"my house": "mein Haus",
"my boat": "mein Boot",
"my horse": "mein Pferd"

}

A map is processed by looping over all keys
of the map with the help of the pre-defined
function object.keys (m), which returns an ar-
ray of all keys of a map m. For instance,

Four Types of Basic Data Structures

var i=0, key="", keys=[];
keys = Object.keys(myTranslation);
for (i=0; i < keys.length; i++) {
key = keys[il];
alert ('The translation of
myTranslation[key]) ;

'+ key +' is '+
}

For adding a new entry to a map, we simply
associate the new value with its key as in:

myTranslation["my car"] = "mein Auto";

For deleting an entry from a map, we can use
the pre-defined delete operator as in:

delete myTranslation["my boat"];

For searching in a map if it contains an entry
for a certain key value, such as for testing if
the translation map contains an entry for "my
bike" we can check the following:

if ("my bike" in myTranslation)

For looping over a map n, we first convert it
to an array of its keys with the help of the pre-
defined object.keys method, and then we can
use either a for loop or the foreach method.
The following example shows how to loop
with for:

var i=0, key="", keys=[];

keys = Object.keys(m);

for (i=0; i < keys.length;
key = keys[il];
console.log(mlkey]);

}

i++) |

Again, if m is sufficiently small, we can use the
foreach method, as in the following example:

Object.keys (m).forEach(function (key) {
console.log(m[key]);
})

Notice that using the forrach method is more
concise.

For cloning a map n, we can use the com-
position of JSON.stringify and JSON.parse.

We first serialize m to a string representation
with JSON.stringify, and then de-serialize the
string representation to a map object with
JSON.parse:

var clone = JSON.parse(JSON.stringify(m))

Notice that this method works well if the map
contains only simple data values or (possibly
nested) arrays/maps containing simple data
values. In other cases, e.g. if the map contains
pate objects, we have to write our own clone
method.

8 Four Types of Basic Data
Structures

In summary, the four types of basic data struc-
tures supported are:

1. array lists, such as
["one", "two", "three"], Which are special
JS objects called 'arrays', but since they
are dynamic, they are rather array lists
as defined in the Java programming lan-
guage.

2. records, which are special JS objects,
such as (firstName:
"smith"}, as discussed above,

3. maps, which are also special JS objects,
such as {"one":1,"two":2,"three":3}, aS
discussed above,

4. entity tables, like for instance the Table
1 shown below, which are special maps
where the values are entity records with
a standard ID (or primary key) slot, such
that the keys of the map are the standard
IDs of these entity records.

"Tom", lastName:

Table 3: An entity table representing a collection of books

Key

Value

006251587X

{ 1sbn:"006251587X," title:"Weaving the Web", year:2000 }

0465026567

{ 1sbn:"0465026567," title:"Gddel, Escher, Bach", year:1999 }

0465030793

{ 1sbn:"0465030793," title:"I Am A Strange Loop", year:2008 }

Notice that our distinction between maps,
records and entity tables is a purely concep-
tual distinction, and not a syntactical one. For
a JavaScript engine, both {firstName:"Ton",

lastName:"Smith"} and,{"one":l,
"three":3} are just objects. But conceptually,
{firstName:"Tom", lastName:"Smith"} is a
record because firstName and lastName are in-

"two":2,

Methods and Functions

tended to denote properties or fields, while
{"one":1, "three":3} 1S a map be-
cause "one" and "two" are not intended to de-
note properties/fields, but are just arbitrary
string values used as keys for a map.

Making such conceptual distinctions
helps to better understand the options offered
by JavaScript.

"two":2,

9 Methods and Functions

In JavaScript, methods are called "functions",
no matter if they return a value or not. As
shown in Figure 1 below, JS functions are
special JS objects, having an optional name
property and a 1ength property providing their
number of parameters. If a variable v refer-
ences a JS function can be tested with

if (typeof(v) === "function") {...}

Being JS objects implies that JS functions can
be stored in variables, passed as arguments to
functions, returned by functions, have proper-
ties and can be changed dynamically. There-
fore, functions are first-class citizens, and
JavaScript can be viewed as a functional pro-
gramming language,

The general form of a JS function defini-
tion is an assignment of a function expression
to a variable:

var myF = function theNameOfMyF () {...}

where thenameofmMyF is optional. When it is
omitted, the function is anonymous. In any
case, functions are invoked via a variable that
references the function. In the above case, this
means that the function is invoked with myF ()
and not with theNameOfMyF ().

Anonymous function expressions are
called lambda expressions (or shorter lamb-
das) in other programming languages.

As an example of an anonymous function
expression being passed as an argument in
the invocation of another (higher-order) func-
tion, we can take a comparison function being
passed to the pre-defined function sort for
sorting the elements of an array list. Such a
comparison function must return a negative
number if its first argument is considered
smaller than its second argument, it must re-
turn 0 if both arguments are of the same rank,

and it must return a positive number if the sec-
ond argument is considered smaller than the
first one. In the following example, we sort a
list of lists of 2 numbers in lexicographic or-
der:

var list =
list.sort(
return (
x[1

2]1,11,31, (1

[l
unctlon (
(o
[l

’ 11,102,111
1y
] === yl0]
%

(1,
) |
) 2
] (0]

1+ x[0]

[
f
(x
%) i

1)
A IS function declaration has the following

form:

function theNameOfMyF () {...}

It is equivalent to the following named func-
tion definition:

var theNameOfMyF = function theNameOfMyF () {

}

that is, it creates both a function with name
theNameOfMyF and a variable theNameofMyF ref-
erencing this function.

JS functions can have inner functions.
The closure mechanism allows a JS function
using variables (except this) from its outer
scope, and a function created in a closure re-
members the environment in which it was cre-
ated. In the following example, there is no
need to pass the outer scope variable result
to the inner function via a parameter, as it is
readily available:

var sum = function
var result = 0;
numbers. forEach (
result += n;
b
return result;
}i

console.log (

(numbers) {

function (n) {

sum([1,2,3,4]1));

When a method/function is executed, we can
access its arguments within its body by using
the built-in arguments object, which is "array-
like" in the sense that it has indexed elements
and a 1ength property, and we can iterate over
it with a normal for loop, but since it's not
an instance of array, the JS array methods
(such as the forrach looping method) cannot
be applied to it. The arguments object contains
an element for each argument passed to the
method. This allows defining a method with-
out parameters and invoking it with any num-
ber of arguments, like so:

Defining and Using Classes

var sum = function () {
var result 0, i=0;
for (i=0; i < arguments.length; i++) {

result result + arguments[i];

}
return result;

}i

console.log(sum(0,1,1,2,3,5,8));

// 20

A method defined on the prototype of a con-
structor function, which can be invoked on all
objects created with that constructor, such as
Array.prototype.forEach, Where array repre-
sents the constructor, has to be invoked with
an instance of the class as context object ref-
erenced by the this variable (see also the next
section on classes). In the following example,
the array numbers is the context object in the
invocation of forrach:

var numbers [1,2,3]; // create an instance
numbers.forEach(function (n) {

console.log(n);
1)
Whenever such a prototype method is to be in-
voked not with a context object, but with an
object as an ordinary argument, we can do this
with the help of the JS function cai1 method
that takes an object, on which the method is
invoked, as its first parameter, followed by the
parameters of the method to be invoked. For
instance, we can apply the fortach looping
method to the array-like object arguments in
the following way:

var sum = function () {
var result = 0;

which allows to use querysel instead of
document.querySelector.

The option of immediately invoked JS
function expressions can be used for obtaining
a namespace mechanism that is superior to us-
ing a plain namespace object, since it can be
controlled which variables and methods are
globally exposed and which are not. This
mechanism is also the basis for JS module
concepts. In the following example, we define
a namespace for the model code part of an
app, which exposes some variables and the
model classes in the form of constructor func-
tions:

myApp.model = function () {
var appName = "My app's name";
var someNonExposedVariable
of Armaittion ModelClassl () {...}
function ModelClass2 () {...}
function someNonExposedMethod (...) {...}
return {
appName: appName,
ModelClassl: ModelClassl,
ModelClass2: ModelClass2
}
PO

// immediately invoked

This pattern has been proposed in the Web-
Platform.org article JavaScript best practices.

10 Defining and Using Classes

The concept of a class is fundamental in
object-oriented programming. Objects instan-
tiate (or are classified by) a class. A class de-
fines the properties and methods (as a blue-

Array.prototype.forEach.call (arguments, functppint)for the objects created with it. Having

result
});
return result;

}i

result + n;

A variant of the Function.prototype.call
method, taking all arguments of the method
to be invoked as a single array argument, is
Function.prototype.apply.

Whenever a method defined for a proto-
type is to be invoked without a context object,
or when a method defined in the context of an
object is to be invoked without its context ob-
ject, we can bind its this variable to a given
object with the help of the JS function bind
method (Function.prototype.bind). This al-
lows creating a shortcut for invoking a
method, as in

document.querySelector.bind(

var querySel

document),

a class concept is essential for being able to
implement a data model in the form of model
classes within a Model-View-Controller
(MVC) architecture. However, classes and
their inheritance/extension mechanism are
over-used in classical OO languages, such as
in Java, where all variables and procedures
have to be defined in the context of a class
and, consequently, classes are not only used
for implementing object types (or model
classes), but also as containers for many other
purposes in these languages. This is not the
case in JavaScript where we have the freedom
to use classes for implementing object types
only, while keeping method libraries in name-
space objects.

https://docs.webplatform.org/wiki/tutorials/javascript_best_practices

Defining and Using Classes

Any code pattern for defining classes in
JavaScript should satisfy five requirements.
First of all, (1) it should allow to define a
class name, a set of (instance-level) proper-
ties, preferably with the option to keep them
'private’, a set of (instance-level) methods, and
a set of class-level properties and methods.
It's desirable that properties can be declared
with a range/type, and with other meta-data,
such as constraints. There should also be two
introspection features: (2) an is-instance-of
predicate that can be used for checking if an
object is a direct or non-direct instance of a
class, and (3) an instance-level property for
retrieving the direct type of an object. In ad-
dition, it is desirable to have a third introspec-
tion feature for retrieving the direct supertype
of a class. And finally, there should be two
inheritance mechanisms: (4) property inher-
itance and (5) method inheritance. In addi-
tion, it is desirable to have support for mul-
tiple inheritance and multiple classifications,
for allowing objects to play several roles at the
same time by instantiating several role class-
es.

There is no explicit class concept in
JavaScript. Different code patterns for defin-
ing classes in JavaScript have been proposed
and are being used in different frameworks.
But they do often not satisfy the five require-
ments listed above. The two most important
approaches for defining classes are:

1. In the form of a constructor function that
achieves method inheritance via the pro-
totype chain and allows to create new in-
stances of a class with the help of the new
operator. This is the classical approach
recommended by Mozilla in their
JavaScript Guide.

2. In the form of a factory object that uses
the predefined object.create method for
creating new instances of a class. In this
approach, the constructor-based inheri-
tance mechanism has to be replaced by
another mechanism. Eric Elliott has ar-
gued that factory-based classes are a vi-
able alternative to constructor-based
classes in JavaScript (in fact, he even con-
demns the use of classical inheritance
with constructor-based classes, throwing
out the baby with the bath water).

When building an app, we can use both types
of classes, depending on the requirements of
the app. Since we often need to define class
hierarchies, and not just single classes, we
have to make sure, however, that we don't
mix these two alternative approaches within
the same class hierarchy. While the factory-
based approach, as exemplified by mODEL-
cLASSjs, has many advantages, which are
summarized in Table 2, the constructor-based
approach enjoys the advantage of higher per-
formance object creation.

Table 4: Required and desirable features of JS code patterns for classes

Class feature Constructor- Factory-based mODELCcLASSjs
based approach approach

Define properties and methods |yes yes yes
Declare properties with a range .

(and other meta-data) no possibly yes
Built-in is-instance-of predicate |yes yes yes
Built-in direct type property yes yes yes
Built-in direct supertype property .

of classes no possibly yes
Property inheritance yes yes yes
Method inheritance yes yes yes

10

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
http://chimera.labs.oreilly.com/books/1234000000262/ch03.html#fluentstyle_javascript
http://oxygen.informatik.tu-cottbus.de/webeng/JsFrontendApp/book/pt06.html
http://oxygen.informatik.tu-cottbus.de/webeng/JsFrontendApp/book/pt06.html
http://oxygen.informatik.tu-cottbus.de/webeng/JsFrontendApp/book/pt06.html

Constructor-based classes

Class feature bz?szl(;s;;l;)c:(?:;h Fa:;(;)?:;):l?ed mODELCcLASSjs
Multiple inheritance no possibly yes
Multiple classifications no possibly yes
Allow object pools no yes yes

10.1 Constructor-based classes

Only in ES6, a user-friendly syntax for
constructor-based classes has been intro-
duced. In Step 1.a), a base class person is
defined with two properties, firstname and
lastName, as well as with an (instance-level)
method tostring and a static (class-level)
method checkLastName:

class Person {
constructor (first,
this.firstName =
this.lastName =
}
toString () {
return this.firstName
this.lastName;

last) {
first;
last;

FE TR LR

}
static checkLastName (1n) {
if (typeof (1ln)!=="string"
In.trim()==="") {
console.log ("Error: " +
"invalid last name!");

}
}
}

In Step 1.b), class-level ("static") properties
are defined:

Person.instances =

{};

Finally, in Step 2, a subclass is defined with
additional properties and methods that pos-
sibly override the corresponding superclass
methods:

class Student extends Person {

constructor(first, last, studNo) {
super.constructor (first, last);
this.studNo = studNo;

}

// method overrides superclass method

toString () {
return super.toString()

this.studNo +")";

+ oM+

In ES5, we can define a constructor-based
class with a subclass in the form of construc-
tor functions, following a code pattern recom-
mended by Mozilla in their JavaScript Guide,
as shown in the following steps.

Step 1.a) First define the constructor
function that implicitly defines the properties
of the class by assigning them the values of
the constructor parameters when a new object
is created:

last) {
first;
last;

function Person(first,
this.firstName =
this.lastName =

}

Notice that within a constructor, the special
variable this refers to the new object that is
created when the constructor is invoked.

Step 1.b) Next, define the instance-level
methods of the class as method slots of the ob-
ject referenced by the constructor's prototype

property:
Person.prototype.toString = function () {
return this.firstName + " " + this.lastName;

}

Step 1.c) Class-level ("static") methods can
be defined as method slots of the constructor
function itself (recall that, since JS functions
are objects, they can have slots), as in

Person.checkLastName = function (1ln) {
if (typeof (ln)!=="string" || ln.trim()===""
console.log ("Error: invalid last name!");
}
}

Step 1.d) Finally, define class-level ("static")
properties as property slots of the constructor
function:

Person.instances =

{}:

Step 2.a): Define a subclass with additional
properties:
function Student(first, last, studNo) {
// invoke superclass constructor
Person.call(this, first, last);
// define and assign additional properties
this.studNo = studNo;
}
By invoking the supertype constructor with
Person.call(this, ...) for any new object
created, and referenced by this, as an instance
of the subtype student, we achieve that the

property slots created in the supertype con-

11

http://oxygen.informatik.tu-cottbus.de/webeng/JsFrontendApp/book/pt06.html
https://en.wikipedia.org/wiki/Object_pool_pattern
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model

Constructor-based classes

structor (firstName and lastName) are also
created for the subtype instance, along the en-
tire chain of supertypes within a given class
hierarchy. In this way we set up a property
inheritance mechanism that makes sure that
the own properties defined for an object on
creation include the own properties defined by
the supertype constructors.

In Step 2b), we set up a mechanism for
method inheritance via the constructor's
prototype property. We assign a new object
created from the supertype's prototype object
to the prototype property of the subtype con-
structor and adjust the prototype's constructor
property:

// Student inherits from Person
Student.prototype Object.create (
Person.prototype) ;

// adjust the subtype's constructor property
Student.prototype.constructor = Student;

With Object.create(Person.prototype) W€
create a new object with person.prototype as
its prototype and without any own property
slots. By assigning this object to the
prototype property of the subclass construc-
tor, we achieve that the methods defined in,
and inherited from, the superclass are also
available for objects instantiating the subclass.
This mechanism of chaining the prototypes
takes care of method inheritance. Notice that
setting student.prototype tO Object.create (
Person.prototype) 1S preferable over setting
it t0 new Person(), which was the way to
achieve the same in the time before ESS.

Step 2¢): Define a subclass method that over-
rides a superclass method:

Student.prototype.toString = function () {
return Person.prototype.toString.call(this)
"(" 4+ this.studNo + ")";
}i

An instance of a constructor-based class is
created by applying the new operator to the

constructor function and providing suitable
arguments for the constructor parameters:

var persl = new Person ("Tom","Smith");

The method tostring is invoked on the object
persl of type person by using the 'dot nota-
tion':

alert ("The full name of the person are: +

persl.toString());

When an object o is created with o new
c(...), where c references a named function
with name "C", the type (or class) name of o
can be retrieved with the introspective expres-
sion o.constructor.name, which returns "C".
However, the Function::name property used
in this expression is supported by all browsers
except Internet Explorer up to version 11.

In JavaScript, a prototype is an object with
method slots (and sometimes also property
slots) that can be inherited by other objects
via JavaScript's method/property slot look-up
mechanism. This mechanism follows the pro-
totype chain defined by the (in ESS still un-
official) built-in reference property proto
(with a double underscore prefix and suffix)
for finding methods or properties. As shown
below in Figure 1, every constructor function
has a reference to a prototype as the value
of its reference property prototype. When a
new object is created with the help of new,
its proto property is set to the construc-
tor's prototype. For instance, after creating a
new object with £ = new Foo (), it holds that
Object.getPrototypeOf (£), wWhich is the same
as f. proto , 1S equal to Foo.prototype.
Consequently, changes to the slots of

,Foo.prototype affect all objects that were cre-

12

ated with new Foo (). While every object has
a proto property slot (except object), on-
ly objects constructed with new have a
constructor property slot.

Factory-based classes

Figure 1: The built-in JavaScript classes object and Function

Object
" hasOwnProperty(in p : String) : Boolean "
isPrototypeOf(in obj : Object) : Boolean
create(in proto : Object, in prop-def : Object) : Object
1 defineProperties(in obj : Object, in prop-def : Object) prototype
keys(in obj : Object) : Array
getPrototypeOf(in obj : Object) : Object
__proto__ 1
()
Function *
name[0..1] : String
length[1] : Integer
apply(in thisObj : Object, in arguments : Array) 0.1
call(in thisObj : Object, in argl, in arg2, in ...)
bind(in thisObj : Object, in argl, in arg2, in ...)
() constructor
Notice that we can retrieve the prototype of an var Person = ¢
object with ob4 P of which typeName: "Person®,
.)] : ject.get r?totype (o), properties: {
1s an official ESS5 alternative to 0. proto firstName: {range:"NonEmptyString",
label:"First name",
10 2 Factory_based Classes writable: true, enumerable: true},
" lastName: {range:"NonEmptyString",
In this approach we define a JS object person label:"Last name",
. . . writable: true, enumerable: true}
(actually representing a class) with a special .
create method that invokes the predefined methods: {
. }l d f . b. f getFullName: function () {
Object.create method for creating objects o return this.firstName 4" "+
type Person. this.lastName;

}
}I
create: function (slots) {
// create object
var obj = Object.create(this.methods,
this.properties);
// add property for direct type
Object.defineProperty(obj, "type",
{value: this, writable: false,
enumerable: true});
// initialize object
Object.keys (slots).forEach (
function (prop) {
if (prop in this.properties) {
obj[prop] = slots[prop]l;
}
1)
return obj;
}
bi

Notice that the JS object person actually rep-
resents a factory-based class. An instance of
such a factory-based class is created by invok-
ing its create method:

var persl = Person.create({firstName:"Tom",
lastName:"Smith"}) ;

13

JavaScript as an Object-Oriented Language

The method getFuliname 1S invoked on the
object pers1 of type person by using the 'dot
notation', like in the constructor-based ap-
proach:

alert ("The full name of the person are: " +

persl.getFullName()) ;

Notice that each property declaration for an
object created with object.create has to in-
clude the 'descriptors' writable: true and
enumerable: true, as in lines 5 and 7 of the
person object definition above.

In a general approach, like in the mOD-
ELcLASS;s library for model-based develop-
ment, we would not repeatedly define the
create method in each class definition, but
rather have a generic constructor function for
defining factory-based classes. Such a factory
class constructor, like mODELCLASS, would
also provide an imheritance mechanism by
merging the own properties and methods with
the properties and methods of the superclass.

11 JavaScript as an Object-
Oriented Language

JavaScript is object-oriented, but in a different
way than classical OO programming lan-
guages such as Java and C++. There is no
explicit class concept in JavaScript. Rather,
classes have to be defined in the form of spe-
cial objects: either as constructor functions or
as factory objects.

However, objects can also be created
without instantiating a class, in which case
they are untyped, and properties as well as
methods can be defined for specific objects
independently of any class definition. At run
time, properties and methods can be added
to, or removed from, any object and class.
This dynamism of JavaScript allows powerful
forms of meta-programming, such as defining
your own concepts of classes or enumerations.

12 The LocalStorage API

For a front-end app, we need to be able to
store data persistently on the front-end device.
Modern web browsers provide two technolo-
gies for this purpose: the simpler one is called
Local Storage, and the more powerful one is
called IndexDB.

A Local Storage database is created per
browser and per origin, which is defined by
the combination of protocol and domain
name. For instance, http://example.com and
http://www.example.com are different origins
because they have different domain names,
while http://www.example.com and
https://www.example.com are different ori-
gins because of their different protocols
(HTTP versus HTTPS).

The Local Storage database managed by
the browser and associated with an app (via
its origin) is exposed as the built-in JavaScript
object with the methods
getItem, removeItem and
However, instead of invoking getitem and
setItem, it 1S more convenient to handle
localStorage as a map, writing to it by assign-
ing a value to a key as in 1ocalstorage["id"]
= 2901465, and retrieving data by reading the
map as in var id =

The following example shows how to cre-
ate an entity table and save its serialization to
Local Storage:

localStorage

setItem, clear.

localStorage["id"].

var persons = {};

persons["2901465"] = {id: 2901465,
name:"Tom"};

persons["3305579"] = {id: 3305579, name:"Su"};

persons["6492003"] = {id: 6492003,

name:"Pete"};
try {
localStorage["personTable"] =
JSON.stringify (persons) ;
} catch (e) {
alert ("Error when writing to Local Storage\n"
+ e);

}

Notice that we have used the predefined
method Json.stringify for serializing the
JSON table persons into a string that is as-
signed as the value of the 1ocalstorage key
"personTable". We can retrieve the table with
the help of the predefined de-serialization
method Json.parse in the following way:

var persons = {};
try {
persons = JSON.parse (
localStorage ["personTable"]) ;
} catch (e) {
alert ("Error when reading from "+
"Local Storage\n" + e);

http://oxygen.informatik.tu-cottbus.de/webeng/JsFrontendApp/book/pt06.html
http://oxygen.informatik.tu-cottbus.de/webeng/JsFrontendApp/book/pt06.html

Further Reading about JavaScript

13 Further Reading about * Eloquent JavaScript, by Marijn Haver-

JavaScript beke.
* Building Front-End Web Apps with Plain

Good open access books about JavaScript are -
JavaScript, by Gerd Wagner

» Speaking JavaScript, by Dr. Axel
Rauschmayer.

15

http://speakingjs.com/es5/index.html
http://eloquentjavascript.net/
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book

	JavaScript Summary
	What you need to know about JavaScript

	Contents
	Introduction
	Types and Data Literals
	Variable Scope
	Strict Mode
	Different Kinds of Objects
	Array Lists
	Maps
	Four Types of Basic Data Structures
	Methods and Functions
	Defining and Using Classes
	Constructor-based classes
	Factory-based classes
	JavaScript as an Object-Oriented Language
	The LocalStorage API
	Further Reading about JavaScript

