
Java Back-End Web App
Tutorial Part 4: Managing

Unidirectional Associations
Learn how to manage unidirectional
associations between object types,
such as the associations assigning

publishers and authors to books, using
Java with Java Server Faces (JSF) as

the user interface technology, the Java
Persistence API (JPA) for object-to-

storage mapping, and a MySQL database

Gerd Wagner <G.Wagner@b-tu.de>
Mircea Diaconescu <M.Diaconescu@b-tu.de>

Java Back-End Web App Tutorial Part 4: Managing Unidirectional
Associations: Learn how to manage unidirectional associations
between object types, such as the associations assigning
publishers and authors to books, using Java with Java Server
Faces (JSF) as the user interface technology, the Java Persistence
API (JPA) for object-to-storage mapping, and a MySQL database
by Gerd Wagner and Mircea Diaconescu

Warning: This tutorial may still contain errors and may still be incomplete in certain respects. Please report any
issue to Gerd Wagner at G.Wagner@b-tu.de or Mircea Diaconescu at M.Diaconescu@b-tu.de.

This tutorial is also available in the following formats: PDF [unidirectional-association-tutorial.pdf]. See also the
project page [http://web-engineering.info], or run the example app [UnidirectionalAssociationApp/index.html]
from our server, or download it as a ZIP archive file [UnidirectionalAssociationApp.zip].

Publication date 2018-06-22
Copyright © 2015-2018 Gerd Wagner, Mircea Diaconescu

This tutorial article, along with any associated source code, is licensed under The Code Project Open License (CPOL) [http://
www.codeproject.com/info/cpol10.aspx], implying that the associated code is provided "as-is", can be modified to create derivative works, can
be redistributed, and can be used in commercial applications, but the article must not be distributed or republished without the authors' consent.

http://web-engineering.info
http://web-engineering.info
UnidirectionalAssociationApp/index.html
UnidirectionalAssociationApp/index.html
UnidirectionalAssociationApp.zip
UnidirectionalAssociationApp.zip
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/info/cpol10.aspx

iii

Table of Contents
Foreword ... vi
1. Reference Properties and Unidirectional Associations ... 1

1. References and Reference Properties .. 2
2. Referential Integrity .. 3
3. Modeling Reference Properties as Unidirectional Associations .. 4
4. Representing Unidirectional Associations as Reference Properties 5
5. Adding Directionality to a Non-Directed Association .. 5
6. Our Running Example .. 7
7. Eliminating Unidirectional Associations ... 7

7.1. The basic elimination procedure restricted to unidirectional associations 7
7.2. Eliminating associations from the design model ... 8

8. Rendering Reference Properties in the User Interface .. 10
2. Unidirectional Functional Associations in Java EE .. 11

1. Implementing Single-Valued Reference Properties in Java ... 11
2. Make a Java Entity Class Model .. 12
3. New Issues ... 12
4. Write the Model Code ... 13

4.1. Summary ... 13
4.2. Code each class of the Entity class model .. 13
4.3. Code the constraints ... 15
4.4. Code getters and setters .. 15
4.5. Implement a deletion policy .. 15
4.6. Serialization and De-Serialization .. 16

5. The View and Controller Layers .. 16
5.1. Initialize the app .. 17
5.2. Show information about associated objects in the List Objects use case 17
5.3. Allow selecting associated objects in the create and update use cases 18

3. Implementing Unidirectional Non-Functional Associations with Java EE 22
1. Implementing Multi-Valued Reference Properties in Java .. 22
2. Make a Java Entity Class Model .. 22
3. New issues ... 24
4. Write the Model Code ... 24

4.1. Summary ... 24
4.2. Code each class of the Java Entity class model .. 25
4.3. Implement a deletion policy .. 26
4.4. Serialization and De-Serialization .. 27

5. Write the User Interface Code ... 27
5.1. Show information about associated objects in the List Objects use case 27
5.2. Allow selecting associated objects in the create use case 28

6. Run the App and Get the Code .. 30
7. Possible Variations and Extensions .. 30

7.1. Set-valued versus ordered-set-valued reference properties 30

iv

List of Figures
1.1. A committee has a club member as chair expressed by the reference property chair 2
1.2. An association end with a "dot" .. 4
1.3. Representing unidirectional associations as reference properties .. 5
1.4. A model of a non-directed association between Committee and ClubMember 6
1.5. Modeling a bidirectional association between Committee and ClubMember 6
1.6. The Publisher-Book information design model with a unidirectional association 7
1.7. The Publisher-Book-Author information design model with two unidirectional
associations ... 7
1.8. Turning a functional association end into a reference property .. 8
1.9. Turning a non-functional association end into a multi-valued reference property 8
1.10. An OO class model for Publisher and Book .. 9
1.11. An OO class model for all three classes .. 9
3.1. An example with a set-valued reference property authoredBooks and an ordered-set-
valued reference property authors .. 30

v

List of Tables
1.1. An example of an association table ... 1
1.2. Different terminologies ... 1
1.3. Functionality types ... 4
1.4. Sample data for Publisher ... 9
1.5. Sample data for Book .. 9
3.1. Sample data for Publisher ... 23
3.2. Sample data for Book .. 23
3.3. Sample data for Author ... 23

vi

Foreword
This tutorial is Part 4 of our series of six tutorials [http://web-engineering.info/JavaJpaJsfApp] about
model-based development of back-end web applications with Java, using JPA and JSF. It shows how to
build a web app that takes care of the three object types Book, Publisher and Author, as well as
of the two unidirectional associations that assign a publisher and (one or more) authors to a book.

A distributed web app is composed of at least two parts: a front-end part, which, at least, renders the
user interface (UI) pages, and a back-end part, which, at least, takes care of persistent data storage. A
back-end web app is a distributed web app where essentially all work is performed by the back-end
component, including data validation and UI page creation, while the front-end only consists of a web
browser's rendering of HTML-forms-based UI pages. Normally, a distributed web app can be accessed
by multiple users, possibly at the same time, over HTTP connections.

In the case of a Java/JPA/JSF back-end app, the back-end part of the app can be executed by a server
machine that runs a web server supporting the Java EE specifications Java Servlets, Java Expression
Language (EL), JPA and JSF, such as the open source server Tomcat/TomEE [http://tomee.apache.org/
apache-tomee.html].

The app supports the four standard data management operations (Create/Read/Update/Delete). It
extends the example app of part 2 by adding code for handling the unidirectional functional (many-
to-one) association between Book and Publisher, and the unidirectional non-functional (many-
to-many) association between Book and Author. The other parts of the tutorial are:

• Part 1 [minimal-tutorial.html]: Building a minimal app.

• Part 2 [validation-tutorial.html]: Handling constraint validation.

• Part 3 [enumeration-tutorial.html]: Dealing with enumerations.

• Part 5 [bidirectional-association-tutorial.html]: Managing bidirectional associations, such as the
associations between books and publishers and between books and authors, not only assigning authors
and a publisher to a book, but also the other way around, assigning books to authors and to publishers.

• Part 6 [subtyping-tutorial.html]: Handling subtype (inheritance) relationships between object types.

http://web-engineering.info/JavaJpaJsfApp
http://web-engineering.info/JavaJpaJsfApp
http://tomee.apache.org/apache-tomee.html
http://tomee.apache.org/apache-tomee.html
http://tomee.apache.org/apache-tomee.html
minimal-tutorial.html
minimal-tutorial.html
validation-tutorial.html
validation-tutorial.html
enumeration-tutorial.html
enumeration-tutorial.html
bidirectional-association-tutorial.html
bidirectional-association-tutorial.html
subtyping-tutorial.html
subtyping-tutorial.html

1

Chapter 1. Reference Properties and
Unidirectional Associations
A property defined for an object type, or class, is called a reference property if its values are references
that reference an object of another, or of the same, type. For instance, the class Committee shown
in Figure 1.1 below has a reference property chair, the values of which are references to objects of
type ClubMember.

An association between object types classifies relationships between objects of those types. For
instance, the association Committee-has-ClubMember-as-chair, which is visualized as a connection
line in the class diagram shown in Figure 1.2 below, classifies the relationships FinanceCommittee-has-
PeterMiller-as-chair, RecruitmentCommittee-has-SusanSmith-as-chair and AdvisoryCommittee-has-
SarahAnderson-as-chair, where the objects PeterMiller, SusanSmith and SarahAnderson are of type
ClubMember, and the objects FinanceCommittee, RecruitmentCommittee and AdvisoryCommittee
are of type Committee.

Reference properties correspond to a special form of associations, namely to unidirectional binary
associations. While a binary association does, in general, not need to be directional, a reference property
represents a binary association that is directed from the property's domain class (where it is defined)
to its range class.

In general, associations are relationship types with two or more object types participating in them.
An association between two object types is called binary. In this tutorial we only discuss binary
associations. For simplicity, we just say 'association' when we actually mean 'binary association'.

Table 1.1. An example of an association table

Committee-has-ClubMember-as-chair
Finance Committee Peter Miller
Recruitment Committee Susan Smith
Advisory Committee Sarah Anderson

While individual relationships (such as FinanceCommittee-has-PeterMiller-as-chair) are important
information items in business communication and in information systems, associations (such as
Committee-has-ClubMember-as-chair) are important elements of information models. Consequently,
software applications have to implement them in a proper way, typically as part of their model layer
within a model-view-controller (MVC) architecture. Unfortunately, many application development
frameworks lack the required support for dealing with associations.

In mathematics, associations have been formalized in an abstract way as sets of uniform tuples, called
relations. In Entity-Relationship (ER) modeling, which is the classical information modeling approach
in information systems and software engineering, objects are called entities, and associations are
called relationship types. The Unified Modeling Language (UML) includes the UML Class Diagram
language for information modeling. In UML, object types are called classes, relationship types are called
associations, and individual relationships are called "links". These three terminologies are summarized
in the following table:

Table 1.2. Different terminologies

Our preferred term(s) UML ER Diagrams Mathematics
object object entity individual

Reference Properties and
Unidirectional Associations

2

Our preferred term(s) UML ER Diagrams Mathematics
object type (class) class entity type unary relation
relationship link relationship tuple
association (relationship
type)

association relationship type relation

functional association one-to-one, many-to-
one or one-to-many
relationship type

function

We first discuss reference properties, which implicitly represent unidirectional binary associations in an
"association-free" class model (a model without any explicit association element).

1. References and Reference Properties
A reference can be either human-readable or an internal object reference. Human-readable references
refer to identifiers that are used in human communication, such as the unique names of astronomical
bodies, the ISBN of books and the employee numbers of the employees of a company. Internal
object references refer to the computer memory addresses of OOP objects, thus providing an efficient
mechanism for accessing objects in the main memory of a computer.

Some languages, like SQL and XML, only support human-readable, but not internal references. In SQL,
human-readable references are called foreign keys, and the identifiers they refer to are called primary
keys. In XML, human-readable references are called ID references and the corresponding attribute type
is IDREF.

Objects in an OO program can be referenced either with the help of human-readable references (such as
integer codes) or with internal object references, which are preferable for accessing objects efficiently
in main memory. Following the XML terminology, we call human-readable references ID references.
We follow the standard naming convention for ID reference properties where an ID reference property
defined in a class A and referencing objects of class B has the name b_id using the suffix _id. When we
store persistent objects in the form of records or table rows, we need to convert internal object references,
stored in properties like publisher, to ID references, stored in properties like publisher_id. This
conversion is performed as part of the serialization of the object by assigning the standard identifier
value of the referenced object to the ID reference property of the referencing object.

In OO languages, a property is defined for an object type, or class, which is its domain. The values of
a property are either data values from some datatype, in which case the property is called an attribute,
or they are object references referencing an object from some class, in which case the property is called
a reference property. For instance, the class Committee shown in Figure Figure 1.1 below has an
attribute name with range String, and a reference property chair with range ClubMember.

Figure 1.1. A committee has a club member as chair expressed by the reference
property chair

name : String
chair : ClubMember

Committee
ClubMember

Object-oriented programming languages, such as JavaScript, PHP, Java and C#, directly support the
concept of reference properties, which are properties whose range is not a datatype but a reference type,
or class, and whose values are object references to instances of that class.

Reference Properties and
Unidirectional Associations

3

By default, the multiplicity of a property is 1, which means that the property is mandatory and
functional (or, in other words, single-valued), having exactly one value, like the property chair in
class Committee shown in Figure 1.1. When a functional property is optional (not mandatory), it
has the multiplicity 0..1, which means that the property's minimum cardinality is 0 and its maximum
cardinality is 1.

A reference property can be either single-valued (functional) or multi-valued (non-functional). For
instance, the reference property Committee::chair shown in Figure 1.1 is single-valued, since it
assigns a unique club member as chair to a club. An example of a multi-valued reference property is
provided by the property Book::authors shown in Figure 1.11 below.

Normally, the collection value of a multi-valued reference property is a set of references, implying
that the order of the references does not matter. In certain cases, however, the order matters and,
consequently, the collection value of such a multi-valued reference property is an ordered set of
references, typically implemented as a list.

2. Referential Integrity
References are important information items in our application's database. However, they are only
meaningful, when their referential integrity is maintained by the app. This requires that for any reference,
there is a referenced object in the database. Consequently, any reference property p with domain class
C and range class D comes with a referential integrity constraint that has to be checked whenever

1. a new object of type C is created,

2. the value of p is changed for some object of type C,

3. an object of type D is destroyed.

A referential integrity constraint also implies two change dependencies:

1. An object creation dependency: an object with a reference to another object can only be created
after the referenced object has been created.

2. An object destruction dependency: an object that is referenced by another object can only be
destroyed after

a. the referencing object is destroyed first (the CASCADE deletion policy), or

b. the reference in the referencing object is either dropped (the DROP-REFERENCE deletion policy)
or replaced by another reference.

For every reference property in our app's model classes, we have to choose, which of these two
possible deletion policies applies.

In certain cases, we may want to relax this strict regime and allow creating objects that have non-
referencing values for an ID reference property, but we do not consider such cases.

Typically, object creation dependencies are managed in the user interface by not allowing the user to
enter a value of an ID reference property, but only to select one from a list of all existing target objects.

Reference Properties and
Unidirectional Associations

4

3. Modeling Reference Properties as
Unidirectional Associations
A reference property (such as chair in the example shown in Figure 1.1 above) can be modeled in a
UML class diagram in the form of an association end owned by its domain class, which is visualized
with the help of a small filled circle (also called a "dot"). This requires to connect the domain class and
the range class of the reference property with an association line, place an ownership dot at the end of
this line at the range class side, and annotate this association end with the property name and with a
multiplicity symbol, as shown in Figure 1.2 below for the case of our example. In this way we get a
unidirectional association, the source class of which is the property's domain and the target class of
which is the property's range.

The fact that an association end is owned by the class at the other end, as visually expressed by the
association end ownership dot at the association end chair in the example shown in Figure 1.2
below, implies that the association end represents a reference property. In the example of Figure 1.2,
the represented reference property is Committee::chair having ClubMember as range. Such an
association, with only one association end ownership dot, is unidirectional in the sense that it allows
`navigation´ (object access) in one direction only: from the class at the opposite side of the dot (the
source class) to the class where the dot is placed (the target class).

Figure 1.2. An association end with a "dot"

name : String

Committee
ClubMember

0..1

chair

1

Thus, the two diagrams shown in Figure 1.1 and Figure 1.2 express essentially equivalent models. When
a reference property, like chair in Figure 1.1, is modeled by an association end with a "dot", then
the property's multiplicity is attached to the association end. Since in a design model, all association
ends need to have a multiplicity, we also have to define a multiplicity for the other end at the side of
the Committee class, which represents the inverse of the property. This multiplicity (of the inverse
property) is not available in the original property description in the model shown in Figure 1.1, so it
has to be added according to the intended semantics of the association. It can be obtained by answering
the question "is it mandatory that any ClubMember is the chair of a Committee?" for finding
the minimum cardinality and the question "can a ClubMember be the chair of more than one
Committee?" for finding the maximum cardinality.

When the value of a property is a set of values from its range, the property is non-functional and its
multiplicity is either 0..* or n..* where n > 0. Instead of 0..*, which means "neither mandatory
nor functional", we can simply write the asterisk symbol *. The association shown in Figure 1.2 assigns
at most one object of type ClubMember as chair to an object of type Committee. Consequently, it's
an example of a functional association.

The following table provides an overview about the different cases of functionality of an association:

Table 1.3. Functionality types

Functionality type Meaning
one-to-one both functional and inverse functional
many-to-one functional

Reference Properties and
Unidirectional Associations

5

Functionality type Meaning
one-to-many inverse functional
many-to-many neither functional nor inverse functional

Notice that the directionality and the functionality type of an association are independent of each other.
So, a unidirectional association can be either functional (one-to-one or many-to-one), or non-functional
(one-to-many or many-to-many).

4. Representing Unidirectional
Associations as Reference Properties
A unidirectional association between a source and a target class can be represented as a reference
property of the source class. This is illustrated in Figure 1.3 below for two unidirectional associations:
a many-to-one and a many-to-many association.

Figure 1.3. Representing unidirectional associations as reference properties

isbn : String {id}
title : String
year : Integer

Book

name : String {id}
address : String

Publisher0..1
*

personId : Integer {id}
name : String

Author

*
*

personId : Integer {id}
name : String

Author

isbn[1] : String {id}
title[1] : String
year[1] : Integer
publisher[0..1] : Publisher
authors[*] : Author

Book
name : String {id}
adress : String

Publisher

Notice that, in a way, we have eliminated the two explicit associations and replaced them with
corresponding reference properties resulting in a class model that can be coded with a classical OOP
language in a straightforward way. OOP languages do not support associations as first class citizens.
They do not have a language element for defining associations. Consequently, an OOP class design
model, which we call OO class model, must not contain any explicit association.

5. Adding Directionality to a Non-Directed
Association
When we make an information model in the form of a UML class diagram, we typically end up with a
model containing one or more associations that do not have any ownership defined for their ends, as,
for instance, in Figure 1.4 below. When there is no ownership dot at either end of an association, such

Reference Properties and
Unidirectional Associations

6

as in this example, this means that the model does not specify how the association is to be represented
(or realized) with the help of reference properties. Such an association does not have any direction.
According to the UML 2.5 specification, the ends of such an association are "owned" by itself, and not
by any of the classes participating in it.

Figure 1.4. A model of a non-directed association between Committee and
ClubMember

name : String

Committee
ClubMember

chairedCommittee

0..1

chair

1

An information design model that contains an association without association end ownership dots is
acceptable as a relational database design model, but it is incomplete as a design model for OOP
languages.

For instance, the model of Figure 1.4 provides a relational database design with two
entity tables, committees and clubmembers, and a separate one-to-one relationship table
committee_has_clubmember_as_chair. But it does not provide a design for Java classes,
since it does not specify how the association is to be implemented with the help of reference properties.

There are three options how to turn an information design model of a non-directed association (without
any association end ownership dots) into an information design model where all associations are either
unidirectional or bidirectional: we can place an ownership dot at either end or at both ends of the
association. Each of these three options defines a different way how to represent, or implement, the
association with the help of reference properties. So, for the association shown in Figure 1.4 above, we
have the following options:

1. Place an ownership dot at the chair association end, leading to the model shown in Figure 1.2
above, which can be transformed into the OO class model shown in Figure 1.1 above.

2. Place an ownership dot at the chairedCommittee association end, leading to the completed
models shown in Figure 1.3 above.

3. Make the association bidirectional by placing ownership dots at both association ends with
the meaning that the association is implemented in a redundant manner by a pair of mutually
inverse reference properties Committee::chair and ClubMember::chairedCommittee, as
discussed in the next part of our tutorial.

Figure 1.5. Modeling a bidirectional association between Committee and
ClubMember

name : String

Committee
ClubMember

chairedCommittee

0..1

chair

1

So, whenever we have modeled an association, we have to make a choice, which of its ends represents
a reference property and will therefore be marked with an ownership dot. It can be either one, or both.
This decision also implies a decision about the navigability of the association. When an association end
represents a reference property, this implies that it is navigable (via this property).

In the case of a functional association that is not one-to-one, the simplest design is obtained by defining
the direction of the association according to its functionality, placing the association end ownership dot

Reference Properties and
Unidirectional Associations

7

at the association end with the multiplicity 0..1 or 1 . For a non-directed one-to-one or many-to-many
association, we can choose the direction as we like, that is, we can place the ownership dot at either
association end.

6. Our Running Example
The model shown in Figure 1.6 below (about publishers and books) serves as our running example for
a unidirectional functional association in this tutorial. Notice that it contains the unidirectional many-
to-one association Book-has-Publisher.

Figure 1.6. The Publisher-Book information design model with a unidirectional
association

isbn : String {id}
title : String
year : Integer

Book

name : String {id}
address : String

Publisher

0..1 *

We may also have to deal with a non-functional (multi-valued) reference property representing a
unidirectional non-functional association. For instance, the unidirectional many-to-many association
between Book and Author shown in Figure 1.7 below, models a multi-valued (non-functional)
reference property authors.

Figure 1.7. The Publisher-Book-Author information design model with two
unidirectional associations

isbn : String {id}
title : String
year : Integer

Book

name : String {id}
address : String

Publisher0..1
*

personId : Integer {id}
name : String

Author

*
*

7. Eliminating Unidirectional
Associations
Since classical OO programming languages do not support associations as first class citizens, but only
classes and reference properties representing unidirectional associations, we have to eliminate all explicit
associations from general information design models for obtaining OO class models.

7.1. The basic elimination procedure restricted to
unidirectional associations
The starting point of our restricted association elimination procedure is an information design model
with various kinds of unidirectional associations, such as the model shown in Figure 1.6 above. If the
model still contains any non-directional associations, we first have to turn them into directional ones by
making a decision on the ownership of their ends, as discussed in Section 5.

Reference Properties and
Unidirectional Associations

8

A unidirectional association connecting a source with a target class is replaced with a corresponding
reference property in its source class having

1. the same name as the association end, if there is any, otherwise it is set to the name of the target class
(possibly pluralized, if the reference property is multi-valued);

2. the target class as its range;

3. the same multiplicity as the target association end,

4. a uniqueness constraint if the unidirectional association is inverse functional.

This replacement procedure is illustrated for the case of a unidirectional one-to-one association in
Figure 1.3 below.

Figure 1.8. Turning a functional association end into a reference property

name : String

Committee
ClubMember

chairedCommittee

0..1

chair

1

name : String

Committee

chairedCommittee[0..1] : Committee

ClubMember

For the case of a unidirectional one-to-many association, Figure 1.9 below provides an illustration of the
association elimination procedure. Here, the non-functional association end at the target class Point
is turned into a corresponding reference property with name points obtained as the pluralized form
of the target class name.

Figure 1.9. Turning a non-functional association end into a multi-valued reference
property

Polygon x : Integer
y : Integer

Point

1 3..*

points[3..*] : Point

Polygon
x : Integer
y : Integer

Point

7.2. Eliminating associations from the design
model
In the case of our running example, the Publisher-Book-Author information design model, we have to
replace both unidirectional associations with suitable reference properties. In the first step, we replace

Reference Properties and
Unidirectional Associations

9

the many-to-one association Book-has-Publisher in the model of Figure 1.6 with a functional reference
property publisher in the class Book, resulting in the following OO class model:

Figure 1.10. An OO class model for Publisher and Book

isbn[1] : String {id}
title[1] : String
year[1] : Integer
publisher[0..1] : Publisher

Book

name : String {id}
adress : String

Publisher

Notice that since the target association end of the Book-has-Publisher association has the multiplicity
0..1, we have to declare the new property publisher as optional by defining its multiplicity to be
0..1.

The meaning of this OO class model and its reference property publisher can be illustrated by a
sample data population for the two model classes Book and Publisher as presented in the following
tables:

Table 1.4. Sample data for Publisher

Name Address
Bantam Books New York, USA
Basic Books New York, USA

Table 1.5. Sample data for Book

ISBN Title Year Publisher
0553345842 The Mind's I 1982 Bantam Books
1463794762 The Critique of Pure

Reason
2011

1928565379 The Critique of Practical
Reason

2009

0465030793 I Am A Strange Loop 2000 Basic Books

In the second step, we replace the many-to-many association Book-has-Author in the model of Figure 1.7
with a multi-valued reference property authors in the class Book, resulting in the following OO class
model:

Figure 1.11. An OO class model for all three classes

personId : Integer {id}
name : String

Author

isbn[1] : String {id}
title[1] : String
year[1] : Integer
publisher[0..1] : Publisher
authors[*] : Author

Book
name : String {id}
adress : String

Publisher

After the platform-independent OO class model has been completed, one or more platform-specific data
models, for a choice of specific implementation platforms, can be derived from it. Such a platform-
specific data model can still be expressed in the form of a UML class diagram, but it contains only

Reference Properties and
Unidirectional Associations

10

modeling elements that can be directly coded in the chosen platform. Thus, for any platform considered,
two guidelines are needed: 1) how to make the platform-specific data model, and 2) how to code this
model.

8. Rendering Reference Properties in the
User Interface
The widgets used for data input and output in a (CRUD) data management user interface (UI)
normally correspond to properties defined in a model class of an app. We have to distinguish between
(various types of) input fields corresponding to (various kinds of) attributes, and choice widgets (such
as selection lists) corresponding to enumeration attributes or to reference properties. Representing
reference properties in the UI with select controls, instead of input fields, prevents the user from
entering invalid ID references, so it takes care of referential integrity.

In general, a single-valued reference property can be rendered as a single-selection list in the UI, no
matter how many objects populate the reference property's range, from which one specific choice is to
be made. If the cardinality of the reference property's range is sufficiently small (say, not greater than
7), then we can also use a radio button group instead of a selection list.

A multivalued reference property can be rendered as a multiple-selection list in the UI. However,
the corresponding multiple-select control of HTML is not really usable as soon as there are many
(say, more than 20) different options to choose from because the way it renders the choice is visually
too scattered. In the special case of having only a few (say, no more than 7) options, we can also use a
checkbox group instead of a multiple-selection list. But for the general case of having in the UI a list
containing all associated objects chosen from the reference property's range class, we need to develop
a special UI widget that allows to add (and remove) objects to (and from) a list of chosen objects.

Such a multiple-choice widget consists of

1. an HTML list element containing the chosen (associated) objects, where each list item contains a
push button for removing the object from the choice;

2. a single-select control that, in combination with a push button, allows to add a new associated
object from the range of the multi-valued reference property.

11

Chapter 2. Implementing
Unidirectional Functional
Associations with Java EE
The three example apps that we have discussed in previous chapters, the minimal app, validation app and
enumeration app, have been limited to managing the data of one object type only. A real app, however,
has to manage the data of several object types, which are typically related to each other in various
ways. In particular, there may be associations and subtype (inheritance) relationships between object
types. Handling associations and subtype relationships are advanced issues in software application
engineering. They are often not sufficiently discussed in software development text books and not well
supported by application development frameworks. In this part of the tutorial, we show how to deal
with unidirectional associations, while bidirectional associations and subtype relationships are covered
in parts 5 and 6.

We adopt the approach of model-based development, which provides a general methodology for
engineering all kinds of artifacts, including data management apps. For being able to understand this
tutorial, you need to understand the underlying concepts and theory. Either you first read the theory
chapter on reference properties and associations, before you continue to read this tutorial chapter, or
you start reading this tutorial chapter and consult the theory chapter only on demand, e.g., when you
stumble upon a term that you don't know.

A unidirectional functional association is either one-to-one or many-to-one. In both cases such an
association is represented, or implemented, with the help of a single-valued reference property.

In this chapter of our tutorial, we show

1. how to derive a data model in the form of a Java Entity class model from an information design
model with single-valued reference properties representing unidirectional functional associations,

2. how to code the Java Entity class model in the form of entity classes (representing model classes),

3. how to write the view and controller code based on the entity classes.

1. Implementing Single-Valued Reference
Properties in Java
A single-valued reference property, such as the property publisher of the object type Book, allows
storing internal references to objects of another type, such as Publisher. When creating a new object,
the constructor function needs to have a parameter for allowing to assign a suitable value to the reference
property. In a typed programming language, such as Java, we may have to take a decision if this value is
expected to be an internal object reference or an ID reference. Using the JPA object-to-storage mapping
technology, we can work with object references and leave the mapping to corresponding ID references
to JPA. The Book class is extended as follows:

@Entity @Table(name="books")
@ViewScoped @ManagedBean(name="book")
public class Book {
 ...

Unidirectional Functional
Associations in Java EE

12

 private Publisher publisher;

 public Book() {}
 public Book(String isbn, String title, Integer year,
 Publisher publisher) {...}

 public Publisher getPublisher() {...}
 public void setPublisher(Publisher publisher) {...}
 ...
}

2. Make a Java Entity Class Model
The starting point for making a Java Entity class model is an OO class model like the one shown in
Figure 1.10.

As explained in the previous parts of this tutorial, we obtain the Java Entity class Publisher from
the corresponding information design class by (1) making all properties private, (2) using Java datatype
classes (String, Integer, etc.), (3) adding the stereotype «get/set» to properties (specifying public getters
and setters), (4) adding a toString function, (5) adding the (class-level) data storage methods
create, retrieve, update and delete:

+checkNameAsId(in n : String, in em : EntityManager) : ConstraintViolation
+toString() : String
+retrieveAll(in em : EntityManager) : List<Publisher>
+retrieve(in em : EntityManager, in name : String) : Publisher
+create(in em : EntityManager, in name : String, in address : String)
+update(in em : EntityManager, in name : String, in address : String)
+delete(in em : EntityManager, in name : String)

«get/set» -name : String {id}
«get/set» -adress : String

«Entity»
Publisher

In a Java Entity class model, for any association end dot in the OO class model, we show the reference
property representing the association end and annotate it with the functionality type of the unidirectional
association represented by it. In our example, we add a reference property publisher in the entity
class Book and annotate it with the association's functionality type manyToOne:

+checkIsbnAsId(in isbn : String, in em : EntityManager) : ConstraintViolation
+toString() : string
+...()

«get/set» -isbn[1] : String {id}
«get/set» -title[1] : String
«get/set» -year[1] : Integer
«get/set» -publisher[0..1] : Publisher {manyToOne}

«Entity»
Book

3. New Issues
Compared to the single-class apps discussed in the previous parts of this tutorial, we have to deal with
a number of new technical issues:

1. In the model code we now have to take care of reference properties that require

Unidirectional Functional
Associations in Java EE

13

a. defining referential integrity constraints with the help of suitable JPA annotations;

b. extending the code of the create, update and delete methods by taking the reference
properties into consideration;

c. a method for converting between (internal) object references and corresponding (external) ID
references in serialization and de-serialization operations.

2. In the user interface (view) code we now have to take care of

a. showing information about associated objects in the retrieve/list all use case;

b. allowing to select an associated object from a list of all existing instances of the target class in the
create object and update object use cases.

4. Write the Model Code
The Java Entity class model can be directly coded for getting the model layer code of our Java back-
end app.

4.1. Summary
1. Code each class from the Java Entity class model as a corresponding entity class.

2. Code an {id} property modifier with the JPA annotation @Id

3. Code any property modifier denoting the functionality type of a reference property, such as
{manyToOne}, with the corresponding JPA annotation, such as @ManyToOne.

4. Code the integrity constraints specified in the model with the help of Java Bean Validation
annotations (or custom validation annotations).

5. Code the getters and setters.

6. Code the create, retrieve, update and delete storage management operations as class-
level methods.

These steps are discussed in more detail in the following sections.

4.2. Code each class of the Entity class model
Each class C of the Java Entity class model is coded as an annotated bean class with name C having a
default constructor (with no parameters) and a constructor with entity creation parameters.

For instance, the Book class from the Entity class model is coded in the following way:

@Entity @Table(name="books")
@ViewScoped @ManagedBean(name="book")
public class Book {
 @Id @NotNull(message="An ISBN is required!")
 private String isbn;

Unidirectional Functional
Associations in Java EE

14

 @Column(nullable=false)
 @NotNull(message="A title is required!")
 private String title;
 @Column(nullable=false)
 @NotNull(message="A year is required!")
 private Integer year;
 @ManyToOne(fetch=FetchType.EAGER)
 private Publisher publisher;

 public Book() {}
 public Book(String isbn, String title,
 Integer year, Publisher publisher) {
 this.setIsbn(isbn);
 this.setTitle(title);
 this.setYear(year);
 this.setPublisher(publisher);
 }
 ... // getters, setters, etc.
}

The @ManyToOne annotation on the property publisher is used for specifying the functionality
type of the association Book has Publisher represented by the reference property publisher since
it holds that a book has one publisher and a publisher has many books. This annotation also allows to
specify a fetch type with the parameter fetch taking one of the following two possible values:

• FetchType.EAGER, implying that a retrieval of an entity includes a retrieval of the associated
entity referenced by the entity with this property. In our example, this means that when a Book entity
is retrieved, the Publisher entity referenced by the book's publisher property is also retrieved.
This behavior is very useful and it should be used whenever the data to be retrieved can be handled
in main memory.

• FetchType.LAZY, implying that referenced entities are not automatically retrieved when a
referencing entity is retrieved. In our example, this means that the referenced Publisher entity
is not retrieved together with a referencing Book entity, leaving the value of the publisher
property set to null. With this fetching behavior, a referenced entity has to be retrieved separately
by invoking the reference property's getter in the context of a transaction (in our example by invoking
getPublisher).

In the case of a single-valued reference property (representing a functional association) annotated with
either @OneToOne or @ManyToOne, the default value is FetchType.EAGER, so referenced entities
are fetched together with referencing entities, while in the case of a non-functional association (with
either @OneToMany or @ManyToMany), the default value is FetchType.LAZY, so referenced
entities are not fetched together with referencing entities, but have to be retrieved separately, if needed.

As a result of these JPA annotations, the following SQL table creation statement for creating the books
table is generated:

CREATE TABLE IF NOT EXISTS `books` (
 `ISBN` varchar(10) NOT NULL,
 `TITLE` varchar(255) NOT NULL,
 `YEAR` int(11) NOT NULL,
 `PUBLISHER_NAME` varchar(255) DEFAULT NULL
 FOREIGN KEY (`PUBLISHER_NAME`) REFERENCES `publishers` (`NAME`)
);

Unidirectional Functional
Associations in Java EE

15

4.3. Code the constraints
Take care that all property constraints specified in the entity class model are properly coded by
using suitable Bean Validation annotations, as explained in Part 2 (Validation Tutorial [validation-
tutorial.html]). For instance, for the name attribute, we have to use the JPA annotation @Id for
specifying that the attribute corresponds to the primary key column of the database table to which the
entity class is mapped, and the Bean Validation annotation @NotNull for defining a mandatory value
constraint that is checked before an entity is saved to the database.

In the case of the address attribute, we have to define a mandatory value constraint in two forms:
with the JPA annotation @Column(nullable=false) for the corresponding table column, and
with the Bean Validation annotation @NotNull for the attribute.

@Id @NotNull(message="A name is required!")
private String name;

@Column(nullable=false)
@NotNull(message="An address is required!")
private String address;

Notice that, unfortunately, the current Java EE technology requires defining the same constraint
twice, once for the database in the form of a JPA annotation, and once for the Java app in the
form of a Bean Validation annotation.

4.4. Code getters and setters
Code the setter operations as (instance-level) methods. The setters only assign values and do not perform
any validation, since the property constraints are only checked before save by the Java EE/JPA execution
environment. The getters simply return the actual values of properties.

4.5. Implement a deletion policy
For any reference property, we have to choose and implement a deletion policy for taking care of the
corresponding object destruction dependency in the delete method of the reference property's range
class. In our case, we have to choose between

1. deleting all books published by the deleted publisher;

2. dropping from all books published by the deleted publisher the reference to the deleted publisher.

We choose the second policy, which can only be used inf the case of an optional reference property such
as book.publisher. This is shown in the following code of the Publisher.delete method
where for all book entities concerned the property book.publisher is cleared:

public static void delete(EntityManager em, UserTransaction ut,
 String name) throw Exception {
 ut.begin();
 Publisher publisher = em.find(Publisher.class, name);
 // find all Books which have this publisher
 Query query = em.createQuery(
 "SELECT b FROM Book b WHERE b.publisher.name = :name");
 query.setParameter("name", name);
 List<Book> books = query.getResultList();

validation-tutorial.html
validation-tutorial.html
validation-tutorial.html

Unidirectional Functional
Associations in Java EE

16

 // clear these books' publisher reference
 for (Book b: books) { b.setPublisher(null);}
 em.remove(publisher);
 ut.commit();
}

The method loops through all Book entities referencing the publisher to be destroyed and sets their
publisher property to null.

4.6. Serialization and De-Serialization
Based on JPA annotations, together with suitable converter classes when needed, serialization (from
Java objects to table rows) as well as the corresponding de-serialization (from table columns to Java
objects) are performed automatically.

5. The View and Controller Layers
The user interface (UI) consists of a start page for navigating to the data management UI pages and one
UI page for each object type and data management use case. All these UI pages are defined in the form
of JSF view files in subfolders of the WebContent/views/ folder. We create the Main Menu page
index.xhtml in the subfolder WebContent/views/app with the following content:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="..." xmlns:h="..." xmlns:f="...">
 <ui:composition template="/WEB-INF/templates/page.xhtml">
 <ui:define name="content">
 <h2>Public Library</h2>
 <h:button value="Manage publishers"
 outcome="/views/publishers/index" />
 <h:button value="Manage books" outcome="/views/books/index" />
 <h:form>
 <h:commandButton value="Clear database"
 action="#{appCtrl.clearData()}" />
 <h:commandButton value="Create test data"
 action="#{appCtrl.createTestData()}" />
 </h:form>
 </ui:define>
 </ui:composition>
</html>

It creates the menu buttons which provide the redirects to corresponding views for each of
the management pages. Additionally, we need to create a corresponding AppController class
which is responsible for the creation and deletion of the test data. The controller is used to
combine code of the Publisher.createTestData and Publisher.clearData methods
with Book.createTestData and Book.clearData methods as follows:

@ManagedBean(name="appCtrl")
@SessionScoped
public class AppController {
 @PersistenceContext(unitName="UnidirAssocApp")
 private EntityManager em;

Unidirectional Functional
Associations in Java EE

17

 @Resource()
 UserTransaction ut;

 public String clearData() {
 try {
 Book.clearData(em, ut);
 Publisher.clearData(em, ut);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return "index";
 }
 public String createTestData() {
 try {
 Publisher.createTestData(em, ut);
 Book.createTestData(em, ut);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return "index";
 }
}

The deletion of Book and Publisher data must be done in a particular order for avoiding referential
integrity violations (books have to be deleted first, before their publishers are deleted).

5.1. Initialize the app
Since the code runs in a Tomcat container, the initialization is made internally by the container.

5.2. Show information about associated objects
in the List Objects use case
In our example we have only one reference property, Book::publisher, which is functional. For
showing information about the optional publisher of a book in the list books use case, the corresponding
cell in the HTML table is filled with the name of the publisher, if there is any:

<ui:composition template="/WEB-INF/templates/page.xhtml">
 <ui:define name="content">
 <h:dataTable value="#{bookCtrl.books}" var="b">
 ...
 <h:column>
 <f:facet name="header">Publisher</f:facet>
 #{b.publisher.name}
 </h:column>
 </h:dataTable>
 <h:button value="Main menu" outcome="index" />
 </ui:define>
</ui:composition>

Notice the cascade call used in the #{b.publisher.name} JSF expression: accessing the property
name of the publisher which is a property of the book instance b.

Unidirectional Functional
Associations in Java EE

18

5.3. Allow selecting associated objects in the
create and update use cases
In this section, we discuss how to create and update an object which has reference properties, such as
a Book object with the reference property publisher.

5.3.1. Create the Object-to-String converter
HTML require string or number values to populate forms. In our case, the property publisher of
the Book class is an object reference. JSF allows the mapping from object and string and back by
using face converters, which are classes annotated with @FacesConverter and implementing the
javax.faces.convert.Converter interface:

@FacesConverter(value="pl.m.converter.PublisherConverter")
public class PublisherConverter implements Converter {
 @Override
 public Object getAsObject(FacesContext context,
 UIComponent component, String value) {
 PublisherController ac = FacesContext
 .getCurrentInstance()
 .getApplication()
 .evaluateExpressionGet(context, "#{publisherCtrl}",
 PublisherController.class);
 EntityManager em = ac.getEntityManager();
 if (value == null) return null;
 else return em.find(Publisher.class, value);
 }
 @Override
 public String getAsString(FacesContext context,
 UIComponent component, Object value) {
 if (value == null) return null;
 else if (value instanceof Publisher) {
 return ((Publisher) value).getName();
 }
 else return null;
 }
}

It defines two methods, getAsObject and getAsString, responsible for the two mappings. It
allows to define custom representations which can be used not only in connection with HTML forms
but also allows serialization which can be used with display views. For being able to extract an object
from database we need an EntityManager which can be obtained from our controller class instances
(e.g., the managed bean publisherCtrl). The instance of the controller can be obtained by using
the FacesContext singletone as shown above:

PublisherController ac = FacesContext.getCurrentInstance()
 .getApplication()
 .evaluateExpressionGet(context, "#{publisherCtrl}",
 PublisherController.class);

In addition, we need to add a getEntityManager method in the controller class as follows:

@ManagedBean(name="publisherCtrl")

Unidirectional Functional
Associations in Java EE

19

@SessionScoped
public class PublisherController {
 @PersistenceContext(unitName="UnidirAssocApp")
 private EntityManager em;
 @Resource()
 UserTransaction ut;

 public EntityManager getEntityManager() {
 return this.em;
 }
 ...
}

JSF needs to compare two publisher instances, when the publisher list has to auto-select the current
publisher, in the update book use case. For this reason, the Publisher model class needs to implement
the equals method. In our case, two publishers are "one and the same", if the values of their name
property are equal:

@Override
public boolean equals(Object obj) {
 if (obj instanceof Publisher) {
 Publisher publisher = (Publisher) obj;
 return (this.name.equals(publisher.name));
 } else return false;
}

5.3.2. Write the view code
To allow selection of objects which have to be associated with the currently edited object from a list
in the create and update use cases, an HTML selection list (a select element) is populated with
the instances of the associated object type with the help of JSF h:selectOneMenu element. The
WebContent/views/books/create.xhtml file is updated as follows:

<ui:composition template="/WEB-INF/templates/page.xhtml">
 <ui:define name="content">
 <h:form id="createBookForm" styleClass="pure-form pure-form-aligned">
 <h:panelGrid columns="3">
 ...
 <h:outputLabel for="publisher" value="Publisher:" />
 <h:selectOneMenu id="publisher" value="#{book.publisher}">
 <f:selectItem itemValue="" itemLabel="---" />
 <f:selectItems value="#{publisherCtrl.publishers}" var="p"
 itemLabel="#{p.name}" itemValue="#{p}" />
 <f:converter converterId="pl.m.converter.PublisherConverter" />
 </h:selectOneMenu>
 <h:message for="publisher" errorClass="error" />
 </h:panelGrid>
 <h:commandButton value="Create"
 action="#{bookCtrl.create(book.isbn, book.title,
 book.year, book.publisher.name)}" />
 </h:form>
 </ui:define>
</ui:composition>

Unidirectional Functional
Associations in Java EE

20

The object-to-string and back converter is specified by using the f:converter
JSF element and its associated @converterId attribute. The value of this
attribute must be the same with the one specified by the value property of
the annotation @FacesConverter used when the converter class is defined, e.g.,
@FacesConverter(value="pl.m.converter.PublisherConverter"). In general,
the converter simple class name should be used (e.g., PublisherConverter), or
the complete fully qualified name, if there is a risk of naming conflicts (e.g.,
pl.m.converter.PublisherConverter). We recommend to use the fully qualified name in
all cases.

The #{publisherCtrl.publishers} JSF expression results in calling the getPublishers
method of the PublisherController class, which is responsible to return the list of available
publishers:

public List<Publisher> getPublishers() {
 return Publisher.getAllObjectsAll(em);
}

The creation of the book is obtained by using the h:commandButton JSF element. It results in the
invocation of the create method of the BookController class:

public String create(String isbn, String title, Integer year,
 Publisher publisher) {
 try {
 Book.create(em, ut, isbn, title, year, publisher);
 // Enforce clearing the form after creating the Book row.
 // Without this, the form will show the latest completed data
 FacesContext facesContext = FacesContext.getCurrentInstance();
 facesContext.getExternalContext().getRequestMap().remove("book");
 } catch (EntityExistsException e) {
 try {
 ut.rollback();
 } catch (Exception e1) {
 e1.printStackTrace();
 }
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return "create";
}

It simply calls the Book.create method, responsible with the creation of a new row in the books table.

The code for the update book use case is very similar, the only important modification being the addition
of the select element (i.e., using the h:selectOneMenu JSF element), which allows to select
which book to update:

<ui:composition template="/WEB-INF/templates/page.xhtml">
 <ui:define name="content">
 <h:form id="createBookForm" styleClass="pure-form pure-form-aligned">
 <h:panelGrid columns="3">
 ...
 <h:outputLabel for="selectBook" value="Select book: " />

Unidirectional Functional
Associations in Java EE

21

 <h:selectOneMenu id="selectBook" value="#{book.isbn}">
 <f:selectItem itemValue="" itemLabel="---" />
 <f:selectItems value="#{bookCtrl.books}" var="b"
 itemValue="#{b.isbn}" itemLabel="#{b.title}" />
 <f:ajax listener="#{bookCtrl.refreshObject(book)}"
 render="isbn title year publisher"/>
 </h:selectOneMenu>
 <h:message for="selectedBook"/>
 ...
 </h:panelGrid>
 <h:commandButton value="Create" action="#{bookCtrl.create(
 book.isbn, book.title, book.year, book.publisher.name)}" />
 </h:form>
 </ui:define>
</ui:composition>

22

Chapter 3. Implementing
Unidirectional Non-Functional
Associations with Java EE
A unidirectional non-functional association is either one-to-many or many-to-many. In both cases such
an association is represented with the help of a multi-valued reference property.

In this chapter, we show

1. how to derive a data model in the form of a Java Entity class model from an information
design model with multi-valued reference properties representing unidirectional non-functional
associations,

2. how to code the Java Entity class model in the form of entity classes (representing model classes),

3. how to write the view and controller code based on the model code.

1. Implementing Multi-Valued Reference
Properties in Java
A multi-valued reference property, such as Book::authors, allows storing a collection of references
to objects of some type, such as references to Author objects. When creating a new object of type
Book, it must be possible to assign one or more authors to the book. to assign the constructor needs an
extra parameter for the multi-valued reference property. In general, we can allow this value to be a set
(or list) of internal object references or of ID references. However, using JPA there is no need for ID
references, being very easy to use object references:

@Entity @Table(name="books")
@ManagedBean(name="book")
@ViewScoped
public class Book {
 ...
 private Set<Author> authors;

 public Book() { // required by JPA @Entity annotation!}
 public Book(String isbn, String title, Integer year, Publisher publisher, Set<Author> authors) {...}

 public Set<Author> getAuthors() { return this.authors;}
 public void setAuthors(Set<Author> authors) { this.authors = authors;}
 ...
}

2. Make a Java Entity Class Model
The starting point for making a Java Entity class model is an OO class model where reference properties
represent associations. The following model for our example app contains the multi-valued reference
property Book::authors, which represents the unidirectional many-to-many association Book-has-
Author:

Implementing Unidirectional
Non-Functional

Associations with Java EE

23

personId : Integer {id}
name : String

Author

isbn[1] : String {id}
title[1] : String
year[1] : Integer
publisher[0..1] : Publisher
authors[*] : Author

Book
name : String {id}
adress : String

Publisher

This model contains, in addition to the unidirectional many-to-one association Book-has-Publisher,
the unidirectional many-to-many association Book-has-Author, which corresponds to the multi-valued
reference property Book::authors.

The meaning of the OO class model and its reference properties publisher and authors can be
illustrated by a sample data population for the three model classes:

Table 3.1. Sample data for Publisher

Name Address
Bantam Books New York, USA
Basic Books New York, USA

Table 3.2. Sample data for Book

ISBN Title Year Authors Publisher
0553345842 The Mind's I 1982 1, 2 Bantam Books
1463794762 The Critique of

Pure Reason
2011 3

1928565379 The Critique of
Practical Reason

2009 3

0465030793 I Am A Strange
Loop

2000 2 Basic Books

Table 3.3. Sample data for Author

Author ID Name
1 Daniel Dennett
2 Douglas Hofstadter
3 Immanuel Kant

We obtain the Java Entity class Author from the corresponding class in the OO class model, as
explained in the previous parts of this tutorial, by (1) making all properties private, (2) using Java
datatype classes, (3) adding public getters and setters, (4) adding a toString function, (5) adding the
data storage methods create, retrieve, update and delete:

+checkPersonIdAsId(in pId : Integer, in em : EntityManager) : ConstraintViolation
+toString() : String
+...()

«get/set» -personId : Integer {id}
«get/set» -name : String

«Entity»
Author

Implementing Unidirectional
Non-Functional

Associations with Java EE

24

In the Java Entity class model, any reference property specified in the OO class model is annotated with
the functionality type of the association represented by it. In our example, we annotate the reference
property authors in the Entity class Book with manyToMany:

+checkIsbnAsId(in isbn : String, in em : EntityManager) : ConstraintViolation
+addAuthor(in author : Author)
+removeAuthor(in author : Author)
+toString() : string
+...()

«get/set» -isbn[1] : String {id}
«get/set» -title[1] : String
«get/set» -year[1] : Integer
«get/set» -publisher[0..1] : Publisher {manyToOne}
«get/set» -authors[*] : Author {manyToMany}

«Entity»
Book

3. New issues
Compared to dealing with a unidirectional functional association, as discussed in the previous section,
we have to deal with the following new technical issues:

1. In model classes we now have to take care of multi-valued reference properties that have to be
annotated with @OneToMany or @ManyToMany.

2. In the user interface code we now have to take care of

a. showing information about a collection of associated objects in the view table columns that render
multi-valued reference properties in the retrieve/list all objects use case;

b. allowing to select a collection of associated objects from a list of all existing instances of the target
class in the create object and update object use cases.

The last issue, allowing to select a collection of associated objects from a list of all existing instances of
some class, in general, cannot be solved with the help of an HTML select multiple form element
because of usability problems. Whenever the set of selectable options is greater than a certain threshold
(defined by the number of options that can be seen on the screen without scrolling), the HTML select
multiple element is no longer usable, and an alternative multi-selection widget has to be used.

4. Write the Model Code
The Java Entity class model can be directly coded for getting the code of the model layer of our Java
back-end app.

4.1. Summary
1. Code each class of the Java Entity class model as a corresponding entity class.

2. Code an {id} property modifier with the JPA annotation @Id

3. Code any property modifier denoting the functionality type of a reference property, such as
{manyToOne}, with the corresponding JPA annotation, such as @ManyToOne.

4. Code the integrity constraints specified in the model with the help of Java Bean Validation
annotations (or custom validation annotations).

Implementing Unidirectional
Non-Functional

Associations with Java EE

25

5. Code the getters and setters as well as the add and remove methods for multi-valued properties.

6. Code the create, retrieve, update and delete storage management operations as class-
level methods.

These steps are discussed in more detail in the following sections.

4.2. Code each class of the Java Entity class
model
For the multi-valued reference property Book::authors, we use a parametrized Set type:

@Entity @Table(name="books")
@ViewScoped @ManagedBean(name="book")
public class Book {
 ...
 @ManyToMany(fetch=FetchType.EAGER)
 private Set<Author> authors;

 public Book() {}
 public Book(String isbn, String title, Integer year,
 Publisher publisher, Set<Author> authors) {...}
 ...
 public Set<Author> getAuthors() { return this.authors;}
 public void setAuthors(Set<Author> authors) { this.authors=authors;}
 ...
}

The JPA annotation @ManyToMany allows to specify the Many-To-Many relation between the Book
and Author. The annotation parameter FetchType.EAGER is used, so when a Book instance is
created, the list of authors is populated with the corresponding Author instances. As a result of this
annotation, a relation table between Book and Author is created, and the resulting SQL code is shown
below:

CREATE TABLE IF NOT EXISTS `books_author` (
 `Book_ISBN` varchar(10) NOT NULL,
 `authors_PERSONID` int(11) NOT NULL
);

The resulting class name is the concatenation, underscore separated, of the corresponding table names
(e.g., books_author). The primary key columns from each of the two tables are used to implement
the relation. The corresponding column names are created as follows:

• for the table (e.g., books) which correspond to the class with the @ManyToMany annotation (e.g.,
Book), the class name is used as well as the primary key column name, (e.g., Book_ISBN).

• for the other table (e.g., authors), the table name is concatenated with the primary key column
name, (e.g., authors_PERSONID).

It is possible to control these parameters, i.e., table name and relation column names, by using the
@JoinTable annotation. To obtain a custom named relation table, e.g., books_authors and the
corresponding custom named columns, e.g., book_isbn and author_personid, one can use:

@JoinTable(name="books_authors",

Implementing Unidirectional
Non-Functional

Associations with Java EE

26

 joinColumns = {@JoinColumn(name="book_isbn", referencedColumnName="ISBN")},
 inverseJoinColumns = {@JoinColumn(name="author_personid", referencedColumnName="PERSONID")}

In our application, we keep the default, so a @JoinTable annotation is not used.

The corresponding Author class is coded as a simple Java class with the corresponding JPA and Java
Validation API annotations:

@Entity
@Table(name="author")
@ManagedBean(name="author")
@ViewScoped
public class Author {
 @Id @PositiveInteger
 private Integer personId;
 @Column(nullable=false)
 @NotNull(message="A name is required!")
 private String name;
 @Column(nullable=false)
 @NotNull(message="A date of birth is required!")
 @Past private Date dateOfBirth;
 @Past private Date dateOfDeath;

 public Author() {}
 public Author(Integer personId, String name, Date dateOfBirth,
 Date dateOfDeath) {...}

 public Integer getPersonId() {...}
 public void setPersonId(Integer personId) {...}
 public String getName() {...}
 public void setName(String name) {...}
 public Date getDateOfBirth() {...}
 public void setDateOfBirth(Date dateOfBirth) {...}
 public Date getDateOfDeath() {...}
 public void setDateOfDeath(Date dateOfDeath) {...}

 public static void create(EntityManager em, UserTransaction ut, Integer personId,
 String name, Date dateOfBirth, Date dateOfDeath) {...}
 public static void update(EntityManager em, UserTransaction ut, Integer personId,
 String name, Date dateOfBirth, Date dateOfDeath) {...}
 public static void delete(EntityManager em, UserTransaction ut,
 Integer personId) {...}
}

Custom validation annotations are defined and implemented (i.e., @PositiveInteger) as shown in
Part 2 (Validation Tutorial [validation-tutorial.html]).

4.3. Implement a deletion policy
For the reference property Book::authors, we have to implement a deletion policy in the delete
method of the Author class. If we just try to delete an author, and the author is referenced by any of
the book records, then an integrity constraint violation fires, and the author cannot be deleted. We have
two possiblitities for this situation:

validation-tutorial.html
validation-tutorial.html

Implementing Unidirectional
Non-Functional

Associations with Java EE

27

1. delete all books (co-)authored by the deleted author;

2. drop from all books (co-)authored by the deleted author the reference to the deleted author.

We go for the second option. This is shown in the following code of the Author.delete method:

public static void delete(EntityManager em, UserTransaction ut,
 Integer personId) throws Exception {
 ut.begin();
 Author author = em.find(Author.class, personId);
 // find all books with this author
 Query query = em.createQuery("SELECT DISTINCT b FROM Book b "+
 "INNER JOIN b.authors a WHERE a.personId = :personId");
 query.setParameter("personId", personId);
 List<Book> books = query.getResultList();
 // update the corresponding book-to-author relations from the association
 // table (otherwise the author can't be deleted)
 for (Book b : books) {
 b.getAuthors().remove(author);
 }
 // remove the author entry (table row)
 em.remove(author);
 ut.commit();
}

Essentially, there are three steps for this operation:

• create a JPQL query which allows to select all book instances for this author - remember, this is an
unidirectional association, there is no direct method available for this case.

• for every found book which reference this author, we have to remove the author from its authors list.

• remove tha author - now is safe and no relation specific error should occur.

4.4. Serialization and De-Serialization
In Java, by using the JPA built-in annotations (i.e., @Entity for the class and the corresponding ones
for the properties) together with converter classes where is the case as shown in Part 3 (Eumeration
Tutorial [enumeration-tutorial.html]), the serialization is made internally. This means, the serialization
from Java object to the corresponding database table row as well as the de-serilaization from database
table column to Java object are made automatically.

5. Write the User Interface Code
5.1. Show information about associated objects
in the List Objects use case
For showing information about the authors of a book in the list books use case, the corresponding cell in
the HTML table has to be filled with a list of the names of all authors. For this, we implement a method
in the Book class which returns the serialized (as we like to have it displayed) list of author names (in
the form, authorName_1, authorName_2, ..., authorName_n):

enumeration-tutorial.html
enumeration-tutorial.html
enumeration-tutorial.html

Implementing Unidirectional
Non-Functional

Associations with Java EE

28

public String getAuthorNames() {
 String result = "";
 int i = 0, n = 0;
 if (this.authors != null) {
 n = this.authors.size();
 for (Author author : this.authors) {
 result += author.getName();
 if (i< n - 1) {
 result +=", ";
 }
 i++;
 }
 }
 return result;
 }

In the view file, WebContent/views/books/listAll.xhtml we use this method in the JSF
expression corresponding to the authors cell:

<ui:composition template="/WEB-INF/templates/page.xhtml">
 <ui:define name="content">
 <h:dataTable value="#{bookController.books}" var="b">
 ...
 <h:column>
 <f:facet name="header">Publisher</f:facet>
 #{b.publisher.name}
 </h:column>
 <h:column>
 <f:facet name="header">Authors</f:facet>
 #{b.authorNames}
 </h:column>
 </h:dataTable>
 <h:button value="Back" outcome="index" />
 </ui:define>
</ui:composition>

Remember, using b.authorNames results in calling a method named getAuthorNames of the
specific b object.

5.2. Allow selecting associated objects in the
create use case
For allowing to select multiple authors to be associated with the currently edited book in the create book
use case, a multiple selection list (a select element with multiple="multiple"), as shown in
the HTML code below, is populated with the instances of the associated object type. The following code
is part of WebContent/views/books/create.xhtml view file:

<ui:composition template="/WEB-INF/templates/page.xhtml">
 <ui:define name="content">
 <h:form id="createBookForm">
 <h:panelGrid columns="3">
 ...

Implementing Unidirectional
Non-Functional

Associations with Java EE

29

 <h:outputLabel for="authors" value="Authors:" />
 <h:selectManyListbox id="authors" value="#{book.authors}">
 <f:selectItems value="#{authorController.authors}" var="a"
 itemLabel="#{a.name}" itemValue="#{a}" />
 <f:converter converterId="AuthorConverter" />
 </h:selectManyListbox>
 <h:message for="authors" errorClass="error" />
 </h:panelGrid>
 <h:commandButton value="Create" action="#{bookController.create(
 book.isbn, book.title, book.year, book.publisher, book.authors)}"/>
 </h:form>
 <h:button value="Back" outcome="index" />
 </ui:define>
</ui:composition>

Remember that we have to add the equals method for the Author model class. In our case, two
authors are "one and the same" if the values of their personId property are equal:

@Override
public boolean equals(Object obj) {
 if (obj instanceof Author) {
 Author author = (Author) obj;
 return (this.personId.equals(author.personId));
 } else return false;
}

The same like in the case of the Publisher, a JSF converter class is used to serialize authors from
object instance to view strings, when the select list has to be populated, and back to object instance, when
the create method of the BookController is called (the "Create" button was pushed by the user).
The BookController.create method is updated with a new parameter, i.e., the corresponding
list of selected authors:

public String create(String isbn, String title, Integer year, Publisher publisher, Set<Author> authors) {
 try {
 Book.create(em, ut, isbn, title, year, publisher, authors);
 // Enforce clearing the form after creating the Book row.
 // Without this, the form will show the latest completed data
 FacesContext facesContext = FacesContext.getCurrentInstance();
 facesContext.getExternalContext().getRequestMap().remove("book");
 } catch (EntityExistsException e) {
 try {
 ut.rollback();
 } catch (Exception e1) {
 e1.printStackTrace();
 }
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return "create";
}

The update book use case is very similar with the create book use case.

Implementing Unidirectional
Non-Functional

Associations with Java EE

30

6. Run the App and Get the Code
Running your application is simple. First stop (if already started, otherwise skip this part) your
Tomcat/TomEE server by using bin/shutdown.bat for Windows OS or bin/shutdown.sh
for Linux. Next, download and unzip the ZIP archive file [UnidirectionalAssociationApp.zip]
containing all the source code of the application and also the ANT script file which you have to
edit and modify the server.folder property value. Now, execute the following command in
your console or terminal: ant deploy -Dappname=unidirectionalassociationapp.
Last, start your Tomcat web server (by using bin/startup.bat for Windows OS or bin/
startup.sh for Linux). Please be patient, this can take some time depending on the speed
of your computer. It will be ready when the console display the following info: INFO:
Initializing Mojarra [some library versions and paths are
shonw here] for context '/unidirectionalassociationapp'. Finally, open
a web browser and type: http://localhost:8080/unidirectionalassociationapp/
faces/views/app/index.xhtml

You may want to download the ZIP archive [lib.jar] containing all the dependency
libaries, or run the unidirectional association app [http://yew.informatik.tu-cottbus.de/tutorials/java/
unidirectionalassociationapp/] directly from our server.

7. Possible Variations and Extensions
7.1. Set-valued versus ordered-set-valued
reference properties
In Java,both set-valued and ordered-set-valued reference properties, such as
Author::authoredBooks and Book::authors in the example model below, can be
implemented with the predefined generic interface type List<T> as their range. However, it seems
that set-valued reference properties should be rather implemented with Set<T>, such as declaring
Set<Book> as the range of Author::authoredBooks, while ordered-set-valued reference
properties should be implemented with SortedSet<T>, such as declaring SortedSet<Author>
as the range of Book::authors. This issue still has to be investigated for future editions of this
tutorial.

Figure 3.1. An example with a set-valued reference property authoredBooks
and an ordered-set-valued reference property authors

«stdid» personId[1] : Integer
name[1] : String

Author
«stdid» isbn : String
title : String
year : Integer

Book

* *
{ordered}

authored
Books

UnidirectionalAssociationApp.zip
UnidirectionalAssociationApp.zip
lib.jar
lib.jar
http://yew.informatik.tu-cottbus.de/tutorials/java/unidirectionalassociationapp/
http://yew.informatik.tu-cottbus.de/tutorials/java/unidirectionalassociationapp/
http://yew.informatik.tu-cottbus.de/tutorials/java/unidirectionalassociationapp/

	Java Back-End Web App Tutorial Part 4: Managing Unidirectional Associations
	Table of Contents
	Foreword
	Chapter 1. Reference Properties and Unidirectional Associations
	1. References and Reference Properties
	2. Referential Integrity
	3. Modeling Reference Properties as Unidirectional Associations
	4. Representing Unidirectional Associations as Reference Properties
	5. Adding Directionality to a Non-Directed Association
	6. Our Running Example
	7. Eliminating Unidirectional Associations
	7.1. The basic elimination procedure restricted to unidirectional associations
	7.2. Eliminating associations from the design model

	8. Rendering Reference Properties in the User Interface

	Chapter 2. Implementing Unidirectional Functional Associations with Java EE
	1. Implementing Single-Valued Reference Properties in Java
	2. Make a Java Entity Class Model
	3. New Issues
	4. Write the Model Code
	4.1. Summary
	4.2. Code each class of the Entity class model
	4.3. Code the constraints
	4.4. Code getters and setters
	4.5. Implement a deletion policy
	4.6. Serialization and De-Serialization

	5. The View and Controller Layers
	5.1. Initialize the app
	5.2. Show information about associated objects in the List Objects use case
	5.3. Allow selecting associated objects in the create and update use cases
	5.3.1. Create the Object-to-String converter
	5.3.2. Write the view code

	Chapter 3. Implementing Unidirectional Non-Functional Associations with Java EE
	1. Implementing Multi-Valued Reference Properties in Java
	2. Make a Java Entity Class Model
	3. New issues
	4. Write the Model Code
	4.1. Summary
	4.2. Code each class of the Java Entity class model
	4.3. Implement a deletion policy
	4.4. Serialization and De-Serialization

	5. Write the User Interface Code
	5.1. Show information about associated objects in the List Objects use case
	5.2. Allow selecting associated objects in the create use case

	6. Run the App and Get the Code
	7. Possible Variations and Extensions
	7.1. Set-valued versus ordered-set-valued reference properties

