
JavaScript Front-End Web
App Tutorial Part 2: Adding

Constraint Validation

Learn how to build a front-end web ap-
plication with responsive constraint

validation using plain JavaScript

Gerd Wagner <G.Wagner@b-tu.de>

JavaScript Front-End Web App Tutorial Part 2: Adding Constraint
Validation: Learn how to build a front-end web application with re-
sponsive constraint validation using plain JavaScript
by Gerd Wagner

Warning: This tutorial manuscript may contain errors and may still be incomplete. Please report any issue to Gerd
Wagner at G.Wagner@b-tu.de.

This tutorial is also available in the following formats: PDF. You may run the example app from our server, or
download the code as a ZIP archive file. See also our Web Engineering project page.

Publication date 2021-04-12
Copyright © 2014-2021 Gerd Wagner

This tutorial article, along with any associated source code, is licensed under The Code Project Open License (CPOL), implying that the
associated code is provided "as-is", can be modified to create derivative works, can be redistributed, and can be used in commercial applications,
but the article must not be distributed or republished without the author's consent.

validation-tutorial.pdf
2-ValidationApp/index.html
2-ValidationApp.zip
http://web-engineering.info/
http://www.codeproject.com/info/cpol10.aspx

Table of Contents
Foreword ... vi
1. Constraint Validation .. 1

1. Introduction .. 1
2. Integrity Constraints ... 1

2.1. String Length Constraints ... 3
2.2. Mandatory Value Constraints ... 3
2.3. Range Constraints .. 4
2.4. Interval Constraints .. 5
2.5. Pattern Constraints ... 6
2.6. Cardinality Constraints ... 7
2.7. Uniqueness Constraints .. 8
2.8. Standard Identifiers (Primary Keys) .. 8
2.9. Referential Integrity Constraints ... 9
2.10. Frozen and Read-Only Value Constraints .. 9
2.11. Beyond property constraints .. 10

3. Responsive Validation ... 11
4. Constraint Validation in MVC Applications ... 11
5. Adding Constraints to a Design Model .. 12
6. Summary .. 13

2. Constraint Validation in Plain JS ... 15
1. Introduction .. 15
2. New Issues ... 15
3. Using ES6 Modules .. 16
4. Make a JavaScript Class Model ... 17
5. Set up the Folder Structure ... 18

5.1. Provide utility functions and error classes in library files 19
5.2. Create a start page ... 19

6. Write the Model Code .. 20
6.1. Summary ... 20
6.2. Code the model class as a constructor function .. 20
6.3. Code the property checks ... 21
6.4. Code the property setters .. 22
6.5. Add a serialization function .. 22
6.6. Data management operations .. 23

7. Write the View Code .. 25
7.1. Set up the user interface for Create Book .. 26
7.2. Set up the user interface for Update Book ... 27

8. Possible Variations and Extensions .. 28
8.1. Adding an object-level validation function .. 28
8.2. Using implicit JS setters ... 28

9. Points of Attention .. 29
9.1. Boilerplate code ... 29
9.2. Configuring the UI for preventing invalid user input .. 30
9.3. Improving the user experience by showing helpful auto-complete suggestions 30

10. Practice Project ... 30

iii

List of Figures
1.1. An example of an object-level constraint ... 10
1.2. A design model defining the object type Book with two invariants .. 12
2.1. From an information design model to a JS class model .. 18
2.2. The object type Movie defined with several constraints .. 30

iv

List of Tables
1.1. Sample data for Book ... 13
2.1. Datatype mapping .. 20
2.2. Sample data ... 31

v

Foreword
This tutorial is Part 2 of our series of six tutorials about model-based development of front-end web
applications with plain JavaScript. It shows how to build a single-class front-end web application with
constraint validation using plain JavaScript, and no third-party framework or library. While libraries and
frameworks may help to increase productivity, they also create black-box dependencies and overhead,
and they are not good for learning how to do it yourself.

A front-end web application can be provided by any web server, but it is executed on the user's computer
device (smartphone, tablet or notebook), and not on the remote web server. Typically, but not necessar-
ily, a front-end web application is a single-user application, which is not shared with other users.

The minimal JavaScript app that we have discussed in the first part of this 6-part tutorial has been limited
to support the minimum functionality of a data management app only. However, it did not take care of
preventing users from entering invalid data into the app's database. In this second part of the tutorial we
show how to express integrity constraints in a JavaScript model class, and how to perform constraint
validation both in the model/storage code of the app and in the user interface built with HTML5.

The simple form of a JavaScript data management application presented in this tutorial takes care of
only one object type ("books") for which it supports the four standard data management operations
(Create/Retrieve/Update/Delete). It extends the minimal app discussed in the Minimal App Tutorial by
adding constraint validation (and some CSS styling), but it needs to be enhanced by adding further
important parts of the app's overall functionality. The other parts of the tutorial are:

• Part 1: Building a minimal app.

• Part 3: Dealing with enumerations.

• Part 4: Managing unidirectional associations, such as the associations between books and publishers,
assigning a publisher to a book, and between books and authors, assigning authors to a book.

• Part 5: Managing bidirectional associations, such as the associations between books and publishers
and between books and authors, also assigning books to authors and to publishers.

• Part 6: Handling subtype (inheritance) relationships between object types.

vi

http://web-engineering.info/JsFrontendApp
minimal-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/enumeration-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/unidirectional-association-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/bidirectional-association-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/subtyping-tutorial.html

Chapter 1. Integrity Constraints and Data
Validation

1. Introduction

For detecting non-admissible and inconsistent data and for preventing such data to be added to an appli-
cation's database, we need to define suitable integrity constraints that can be used by the application's
data validation mechanisms for catching these cases of flawed data. Integrity constraints are logical
conditions that must be satisfied by the data entered by a user and stored in the application's database.

For instance, if an application is managing data about persons including their birth dates and their death
dates, then we must make sure that for any person record with a death date, this date is not before that
person's birth date.

Since integrity maintenance is fundamental in database management, the data definition language part
of the relational database language SQL supports the definition of integrity constraints in various forms.
On the other hand, however, there is hardly any support for integrity constraints and data validation
in common programming languages such as PHP, Java, C# or JavaScript. It is therefore important to
take a systematic approach to constraint validation in web application engineering, like choosing an
application development framework that provides sufficient support for it.

Unfortunately, many web application development frameworks do not provide sufficient support for
defining integrity constraints and performing data validation. Integrity constraints should be defined in
one (central) place in an app, and then be used for configuring the user interface and for validating data
in different parts of the app, such as in the user interface and in the database. In terms of usability, the
goals should be:

1. To prevent the user from entering invalid data in the user interface (UI) by limiting the input options,
if possible.

2. To detect and reject invalid user input as early as possible by performing constraint validation in the
UI for those UI widgets where invalid user input cannot be prevented by limiting the input options.

3. To prevent that invalid data pollutes the app's main memory state and persistent database state by
performing constraint validation also in the model layer and in the database.

HTML5 provides support for validating user input in an HTML-forms-based user interface (UI). Here,
the goal is to provide immediate feedback to the user whenever invalid data has been entered into a form
field. This UI mechanism of responsive validation is an important feature of modern web applications.
In traditional web applications, the back-end component validates the data and returns the validation
results in the form of a set of error messages to the front-end. Only then, often several seconds later, and
in the hard-to-digest form of a bulk message, does the user get the validation feedback.

2. Integrity Constraints

Integrity constraints (or simply constraints) are logical conditions on the data of an app. They may take
many different forms. The most important type of constraints, property constraints, define conditions
on the admissible property values of an object. They are defined for an object type (or class) such that
they apply to all objects of that type. We concentrate on the most important cases of property constraints:

String Length Constraints
require that the length of a string value for an attribute is less than a certain maximum number, or
greater than a minimum number.

1

Constraint Validation

Mandatory Value Constraints

require that a property must have a value. For instance, a person must have a name, so the name
attribute must not be empty.

Range Constraints

require that an attribute must have a value from the value space of the type that has been defined as
its range. For instance, an integer attribute must not have the value "aaa".

Interval Constraints

require that the value of a numeric attribute must be in a specific interval.

Pattern Constraints

require that a string attribute's value must match a certain pattern defined by a regular expression.

Cardinality Constraints

apply to multi-valued properties, only, and require that the cardinality of a multi-valued property's
value set is not less than a given minimum cardinality or not greater than a given maximum cardi-
nality.

Uniqueness Constraints (also called 'Key Constraints')

require that a property's value is unique among all instances of the given object type.

Referential Integrity Constraints

require that the values of a reference property refer to an existing object in the range of the reference
property.

Frozen Value Constraints

require that the value of a property must not be changed after it has been assigned initially.

The visual language of UML class diagrams supports defining integrity constraints either in a special
way for special cases (like with predefined keywords), or, in the general case, with the help of invariants,
which are conditions expressed either in plain English or in the Object Constraint Language (OCL)
and shown in a special type of rectangle attached to the model element concerned. We use UML class
diagrams for modeling constraints in design models that are independent of a specific programming
language or technology platform.

UML class diagrams provide special support for expressing multiplicity (or cardinality) constraints. This
type of constraint allows to specify a lower multiplicity (minimum cardinality) or an upper multiplicity
(maximum cardinality), or both, for a property or an association end. In UML, this takes the form of
a multiplicity expression l..u where the lower multiplicity l is a non-negative integer and the upper
multiplicity u is either a positive integer not smaller than l or the special value * standing for unbounded.
For showing property multiplicity (or cardinality) constrains in a class diagram, multiplicity expressions
are enclosed in brackets and appended to the property name, as shown in the Person class rectangle
below.

In the following sections, we discuss the different types of property constraints listed above in more
detail. We also show how to express some of them in computational languages such as UML class
diagrams, SQL table creation statements, JavaScript model class definitions, or the annotation-based
languages Java Bean Validation annotations and ASP.NET Data Annotations.

Any systematic approach to constraint validation also requires to define a set of error (or 'exception')
classes, including one for each of the standard property constraints listed above.

2

Constraint Validation

2.1. String Length Constraints

The length of a string value for a property such as the title of a book may have to be constrained, typically
rather by a maximum length, but possibly also by a minimum length. In an SQL table definition, a
maximum string length can be specified in parenthesis appended to the SQL datatype CHAR or VARCHAR,
as in VARCHAR(50).

UML does not define any special way of expressing string length constraints in class diagrams. Of
course, we always have the option to use an invariant for expressing any kind of constraint, but it seems
preferable to use a simpler form of expressing these property constraints. One option is to append a
maximum length, or both a minimum and a maximum length, in parenthesis to the datatype name, like so

isbn : String
title : String(5,80)

Book

Another option is to use min/max constraint keywords in the property modifier list:

isbn : String
title : String {min:5, max:80}

Book

2.2. Mandatory Value Constraints

A mandatory value constraint requires that a property must have a value. This can be expressed in a
UML class diagram with the help of a multiplicity constraint expression where the lower multiplicity is
1. For a single-valued property, this would result in the multiplicity expression 1..1, or the simplified
expression 1, appended to the property name in brackets. For example, the following class diagram
defines a mandatory value constraint for the property name:

name[1] : String
age[0..1] : Integer

Person

Whenever a class rectangle does not show a multiplicity expression for a property, the property is manda-
tory (and single-valued), that is, the multiplicity expression 1 is the default for properties.

In an SQL table creation statement, a mandatory value constraint is expressed in a table column defin-
ition by appending the key phrase NOT NULL to the column definition as in the following example:

CREATE TABLE persons(

 name VARCHAR(30) NOT NULL,

 age INTEGER

)

According to this table definition, any row of the persons table must have a value in the column name,
but not necessarily in the column age.

In JavaScript, we can code a mandatory value constraint by a class-level check function that tests if the
provided argument evaluates to a value, as illustrated in the following example:

Person.checkName = function (n) {

3

Constraint Validation

 if (n === undefined) {

 return "A name must be provided!"; // constraint violation error message

 } else return ""; // no constraint violation

};

With Java Bean Validation, a mandatory property like name is annotated with NotNull in the following
way:

@Entity

public class Person {

 @NotNull

 private String name;

 private int age;

}

The equivalent ASP.NET Data Annotation is Required as shown in

public class Person{

 [Required]

 public string name { get; set; }

 public int age { get; set; }

}

2.3. Range Constraints

A range constraint requires that a property must have a value from the value space of the type that has
been defined as its range. This is implicitly expressed by defining a type for a property as its range.
For instance, the attribute age defined for the object type Person in the class diagram above has the
range Integer, so it must not have a value like "aaa", which does not denote an integer. However, it
may have values like -13 or 321, which also do not make sense as the age of a person. In a similar way,
since its range is String, the attribute name may have the value "" (the empty string), which is a valid
string that does not make sense as a name.

We can avoid allowing negative integers like -13 as age values, and the empty string as a name, by
assigning more specific datatypes as range to these attributes, such as NonNegativeInteger to age, and
NonEmptyString to name. Notice that such more specific datatypes are neither predefined in SQL nor
in common programming languages, so we have to implement them either in the form of user-defined
types, as supported in SQL-99 database management systems such as PostgreSQL, or by using suitable
additional constraints such as interval constraints, which are discussed in the next section. In a UML
class diagram, we can simply define NonNegativeInteger and NonEmptyString as custom datatypes
and then use them in the definition of a property, as illustrated in the following diagram:

name[1] : NonEmptyString
age[0..1] : NonNegativeInteger

Person

In JavaScript, we can code a range constraint by a check function, as illustrated in the following example:

Person.checkName = function (n) {

 if (typeof(n) !== "string" || n.trim() === "") {

 return "Name must be a non-empty string!";

 } else return "";

4

Constraint Validation

};

This check function detects and reports a constraint violation if the given value for the name property
is not of type "string" or is an empty string.

In a Java EE web app, for declaring empty strings as non-admissible user input we must set the context
parameter

javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL

to true in the web deployment descriptor file web.xml.

In ASP.NET, empty strings are non-admissible by default.

2.4. Interval Constraints

An interval constraint requires that an attribute's value must be in a specific interval, which is specified
by a minimum value or a maximum value, or both. Such a constraint can be defined for any attribute
having an ordered type, but normally we define them only for numeric datatypes or calendar datatypes.
For instance, we may want to define an interval constraint requiring that the age attribute value must
be in the interval [25,70]. In a class diagram, we can define such a constraint by using the property
modifiers min and max, as shown for the age attribute of the Driver class in the following diagram.

name : String
age : Integer {min:25, max:70}

Driver

In an SQL table creation statement, an interval constraint is expressed in a table column definition by
appending a suitable CHECK clause to the column definition as in the following example:

CREATE TABLE drivers(

 name VARCHAR NOT NULL,

 age INTEGER CHECK (age >= 25 AND age <= 70)

)

In JavaScript, we can code an interval constraint in the following way:

Driver.checkAge = function (a) {

 if (a < 25 || a > 70) {

 return "Age must be between 25 and 70!";

 } else return "";

};

In Java Bean Validation, we express this interval constraint by adding the annotations Min(0) and
Max(120) to the property age in the following way:

@Entity

public class Driver {

 @NotNull

 private String name;

 @Min(25) @Max(70)

 private int age;

5

Constraint Validation

}

The equivalent ASP.NET Data Annotation is Range(25,70) as shown in

public class Driver{

 [Required]

 public string name { get; set; }

 [Range(25,70)]

 public int age { get; set; }

}

2.5. Pattern Constraints

A pattern constraint requires that a string attribute's value must match a certain pattern, typically defined
by a regular expression. For instance, for the object type Book we define an isbn attribute with the
datatype String as its range and add a pattern constraint requiring that the isbn attribute value must be
a 10-digit string or a 9-digit string followed by "X" to the Book class rectangle shown in the following
diagram.

isbn : String
title : String

Book «invariant»
{isbn must be a 10-digit string
or a 9-digit string followed by "X"}

In an SQL table creation statement, a pattern constraint is expressed in a table column definition by
appending a suitable CHECK clause to the column definition as in the following example:

CREATE TABLE books(

 isbn VARCHAR(10) NOT NULL CHECK (isbn ~ '^\d{9}(\d|X)$'),

 title VARCHAR(50) NOT NULL

)

The ~ (tilde) symbol denotes the regular expression matching predicate and the regular expression ^
\d{9}(\d|X)$ follows the syntax of the POSIX standard (see, e.g. the PostgreSQL documentation).

In JavaScript, we can code a pattern constraint by using the built-in regular expression function test,
as illustrated in the following example:

Person.checkIsbn = function (id) {

 if (!/\b\d{9}(\d|X)\b/.test(id)) {

 return "The ISBN must be a 10-digit string or a 9-digit string followed by 'X'!";

 } else return "";

};

In Java EE Bean Validation, this pattern constraint for isbn is expressed with the annotation Pattern
in the following way:

@Entity

public class Book {

 @NotNull

 @Pattern(regexp="^\\(\d{9}(\d|X))$")

 private String isbn;

 @NotNull

6

http://www.postgresql.org/docs/9.0/static/functions-matching.html

Constraint Validation

 private String title;

}

The equivalent ASP.NET Data Annotation is RegularExpression as shown in

public class Book{

 [Required]

 [RegularExpression(@"^(\d{9}(\d|X))$")]

 public string isbn { get; set; }

 public string title { get; set; }

}

2.6. Cardinality Constraints

A cardinality constraint requires that the cardinality of a multi-valued property's value set is not less than
a given minimum cardinality or not greater than a given maximum cardinality. In UML, cardinality
constraints are called multiplicity constraints, and minimum and maximum cardinalities are expressed
with the lower bound and the upper bound of the multiplicity expression, as shown in the following
diagram, which contains two examples of properties with cardinality constraints.

name[1] : String
age[0..1] : Integer
nickNames[0..3] : String

Person

name[1] : String
members[3..5] : Person

Team

The attribute definition nickNames[0..3] in the class Person specifies a minimum cardinality of 0
and a maximum cardinality of 3, with the meaning that a person may have no nickname or at most 3
nicknames. The reference property definition members[3..5] in the class Team specifies a minimum
cardinality of 3 and a maximum cardinality of 5, with the meaning that a team must have at least 3 and
at most 5 members.

It's not obvious how cardinality constraints could be checked in an SQL database, as there is no explicit
concept of cardinality constraints in SQL, and the generic form of constraint expressions in SQL, as-
sertions, are not supported by available DBMSs. However, it seems that the best way to implement a
minimum (or maximum) cardinality constraint is an on-delete (or on-insert) trigger that tests the number
of rows with the same reference as the deleted (or inserted) row.

In JavaScript, we can code a cardinality constraint validation for a multi-valued property by testing the
size of the property's value set, as illustrated in the following example:

Person.checkNickNames = function (nickNames) {

 if (nickNames.length > 3) {

 return "There must be no more than 3 nicknames!";

 } else return "";

};

With Java Bean Validation annotations, we can specify

@Size(max=3)

List<String> nickNames

@Size(min=3, max=5)

List<Person> members

7

Constraint Validation

2.7. Uniqueness Constraints

A uniqueness constraint (or key constraint) requires that a property's value (or the value list of a list of
properties in the case of a composite key constraint) is unique among all instances of the given object
type. For instance, in a UML class diagram with the object type Book we can define the isbn attribute
to be unique, or, in other words, a key, by appending the (user-defined) property modifier keyword key
in curly braces to the attribute's definition in the Book class rectangle shown in the following diagram.

isbn : String {key}
title : String

Book

In an SQL table creation statement, a uniqueness constraint is expressed by appending the keyword
UNIQUE to the column definition as in the following example:

CREATE TABLE books(

 isbn VARCHAR(10) NOT NULL UNIQUE,

 title VARCHAR(50) NOT NULL

)

In JavaScript, we can code this uniqueness constraint by a check function that tests if there is already a
book with the given isbn value in the books table of the app's database.

2.8. Standard Identifiers (Primary Keys)

A unique attribute (or a composite key) can be declared to be the standard identifier for objects of a
given type, if it is mandatory (or if all attributes of the composite key are mandatory). We can indicate
this in a UML class diagram with the help of the property modifier id appended to the declaration of
the attribute isbn as shown in the following diagram.

isbn : String {id}
title : String

Book

Notice that such a standard ID declaration implies both a mandatory value and a uniqueness constraint
on the attribute concerned.

Often, practitioners do not recommended using a composite key as a standard ID, since composite iden-
tifiers are more difficult to handle and not always supported by tools. Whenever an object type does
not have a key attribute, but only a composite key, it may therefore be preferable to add an artificial
standard ID attribute (also called surrogate ID) to the object type. However, each additional surrogate
ID has a price: it creates some cognitive and computational overhead. Consequently, in the case of a
simple composite key, it may be preferable not to add a surrogate ID, but use the composite key as the
standard ID.

There is also an argument against using any real attribute, such as the isbn attribute, for a standard ID.
The argument points to the risk that the values even of natural ID attributes like isbn may have to be
changed during the life time of a business object, and any such change would require an unmanageable
effort to change also all corresponding ID references. However, the business semantics of natural ID
attributes implies that they are frozen. Thus, the need of a value change can only occur in the case of a
data input error. But such a case is normally detected early in the life time of the object concerned, and
at this stage the change of all corresponding ID references is still manageable.

8

Constraint Validation

Standard IDs are called primary keys in relational databases. We can declare an attribute to be the
primary key in an SQL table creation statement by appending the phrase PRIMARY KEY to the column
definition as in the following example:

CREATE TABLE books(

 isbn VARCHAR(10) PRIMARY KEY,

 title VARCHAR(50) NOT NULL

)

In object-oriented programming languages, like JavaScript and Java, we cannot code a standard ID
declaration, because this would have to be part of the metadata of a class definition, and there is no
support for such metadata. However, we should still check the implied mandatory value and uniqueness
constraints.

2.9. Referential Integrity Constraints

A referential integrity constraint requires that the values of a reference property refer to an object that
exists in the population of the property's range class. Since we do not deal with reference properties in
this chapter, we postpone the discussion of referential integrity constraints to Part 4 of our tutorial.

2.10. Frozen and Read-Only Value Constraints

A frozen value constraint defined for a property requires that the value of this property must not be
changed after it has been assigned. This includes the special case of read-only value constraints on
mandatory properties that are initialized at object creation time.

Typical examples of properties with a frozen value constraint are standard identifier attributes and event
properties. In the case of events, the semantic principle that the past cannot be changed prohibits that
the property values of events can be changed. In the case of a standard identifier attribute we may
want to prevent users from changing the ID of an object since this requires that all references to this
object using the old ID value are changed as well, which may be difficult to achieve (even though SQL
provides special support for such ID changes by means of its ON UPDATE CASCADE clause for the change
management of foreign keys).

The following diagram shows how to define a frozen value constraint for the isbn attribute:

isbn : String {id, frozen}
title : String

Book

In Java, a read-only value constraint can be enforced by declaring the property to be final. In JavaScript,
a read-only property slot can be implemented as in the following example:

Object.defineProperty(obj, "teamSize", {value: 5, writable: false, enumerable: true})

where the property slot obj.teamSize is made unwritable. An entire object obj can be frozen with
Object.freeze(obj).

We can implement a frozen value constraint for a property in the property's setter method like so:

Book.prototype.setIsbn = function (i) {

 if (this.isbn === undefined) this.isbn = i;

9

Constraint Validation

 else console.log("Attempt to re-assign a frozen property!");

}

2.11. Beyond property constraints

So far, we have only discussed how to define and check property constraints. However, in certain cases
there may be also integrity constraints that do not just depend on the value of a particular property, but
rather on

1. the values of several properties of a particular object (object-level constraints),

2. the value of a property before and its value after a change attempt (dynamic constraints),

3. the set of all instances of a particular object type (type-level constraints),

4. the set of all instances of several object types.

OCL

The Object Constraint Language (OCL) was defined in 1997 as a formal logic language for expressing
integrity constraints in UML version 1.1. Later, it was extended for allowing to define also (1) derivation
expressions for defining derived properties, and (2) preconditions and postconditions for operations, in a
class model.

In a class model, property constraints can be expressed within the property declaration line in a class
rectangle (typically with keywords, such as id, max, etc.). For expressing more complex constraints,
such as object-level or type-level constraints, we can attach an invariant declaration box to the class
rectangle(s) concerned and express the constraint in unambiguous plain English or in pseudo-code . A
simple example of an object-level constraint expressed as an invariant is shown in Figure 1.1.

Figure 1.1. An example of an object-level constraint

personId[1] : Integer {id}
name[1] : String
dateOfBirth[1] : Date
dateOfDeath[0..1] : Date

Author

«invariant»
{dateOfDeath >= dateOfBirth}

A general approach for implementing object-level constraint validation consists of taking the following
steps:

1. Choose a fixed name for an object-level constraint validation function, such as validate.

2. For any class that needs object-level constraint validation, define a validate function returning
either a ConstraintViolation or a NoConstraintViolation object.

3. Call this function, if it exists, for the given model class,

10

Constraint Validation

a. in the UI/view, on form submission;

b. in the model class, before save, both in the create and in the update method.

Constraints affecting two or more model classes could be defined in the form of static methods (in a
model layer method library) that are invoked from the validate methods of the affected model classes.

3. Responsive Validation

This problem is well-known from classical web applications where the front-end component submits the
user input data via HTML form submission to a back-end component running on a remote web server.
Only this back-end component validates the data and returns the validation results in the form of a set
of error messages to the front-end. Only then, often several seconds later, and in the hard-to-digest form
of a bulk message, does the user get the validation feedback. This approach is no longer considered
acceptable today. Rather, in a responsive validation approach, the user should get immediate validation
feedback on each single data input. Technically, this can be achieved with the help of event handlers
for the user interface events input or change.

Responsive validation requires a data validation mechanism in the user interface (UI), such as the
HTML5 form validation API. Alternatively, the jQuery Validation Plugin can be used as a (non-
HTML5-based) form validation API.

The HTML5 form validation API essentially provides new types of input fields (such as number or
date) and a set of new attributes for form control elements for the purpose of supporting responsive
validation performed by the browser. Since using the new validation attributes (like required, min, max
and pattern) implies defining constraints in the UI, they are not really useful in a general approach
where constraints are only checked, but not defined, in the UI.

Consequently, we only use two methods of the HTML5 form validation API for validating constraints
in the HTML-forms-based user interface of our app. The first of them, setCustomValidity, allows to
mark a form field as either valid or invalid by assigning either an empty string or a non-empty (constraint
violation) message string.

The second method, checkValidity, is invoked on a form before user input data is committed or saved
(for instance with a form submission). It tests, if all fields have a valid value. For having the browser
automatically displaying any constraint violation messages, we need to have a submit event, even if we
don't really submit the form, but just use a save button.

See this Mozilla tutorial or this HTML5Rocks tutorial for more about the HTML5 form validation API.

4. Constraint Validation in MVC Applications

Integrity constraints should be defined in the model classes of an MVC app since they are part of the
business semantics of a model class (representing a business object type). However, a more difficult
question is where to perform data validation? In the database? In the model classes? In the controller?
Or in the user interface ("view")? Or in all of them?

A relational database management system (DBMS) performs data validation whenever there is an at-
tempt to change data in the database, provided that all relevant integrity constraints have been defined
in the database. This is essential since we want to avoid, under all circumstances, that invalid data en-
ters the database. However, it requires that we somehow duplicate the code of each integrity constraint,
because we want to have it also in the model class to which the constraint belongs.

11

http://www.html5rocks.com/en/tutorials/forms/constraintvalidation/
http://jqueryvalidation.org/
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/Constraint_validation
http://www.html5rocks.com/en/tutorials/forms/constraintvalidation/

Constraint Validation

Also, if the DBMS would be the only application component that validates the data, this would create a
latency, and hence usability, problem in distributed applications because the user would not get immedi-
ate feedback on invalid input data. Consequently, data validation needs to start in the user interface (UI).

However, it is not sufficient to perform data validation in the UI. We also need to do it in the model
classes, and in the database, for making sure that no flawed data enters the application's persistent data
store. This creates the problem of how to maintain the constraint definitions in one place (the model), but
use them in two or three other places (at least in the model classes and in the UI code, and possibly also
in the database). We call this the multiple validation problem. This problem can be solved in different
ways. For instance:

1. Define the constraints in a declarative language (such as Java Bean Validation Annotations or
ASP.NET Data Annotations) and generate the back-end/model and front-end/UI validation code
both in a back-end application programming language such as Java or C#, and in JavaScript.

2. Keep your validation functions in the (PHP, Java, C# etc.) model classes on the back-end, and invoke
them from the JavaScript UI code via XHR. This approach can only be used for specific validations,
since it implies the penalty of an additional HTTP communication latency for each validation in-
voked in this way.

3. Use JavaScript as your back-end application programming language (such as with NodeJS), then
you can code your validation functions in your JavaScript model classes on the back-end and execute
them both before committing changes on the back-end and on user input and form submission in
the UI on the front-end side.

The simplest, and most responsive, solution is the third one, using only JavaScript both for the back-
end and front-end components of a web app.

5. Adding Constraints to a Design Model

We again consider the book data management problem that was considered in Part 1 of this tutorial.
But now we also consider the data integrity rules (or 'business rules') that govern the management of
book data. These integrity rules, or constraints, can be expressed in a UML class diagram as shown
in Figure 1.2 below.

Figure 1.2. A design model defining the object type Book with two invariants

isbn[1] : NonEmptyString {id}
title[1] : NonEmptyString(50)
year[1] : Integer
edition[0..1] : PositiveInteger

Book

«invariant»
{year > 1454 AND
year <= nextYear()}

«invariant»
{isbn must be a 10-digit string
or a 9-digit string followed by "X"}

In this model, the following constraints have been expressed:

1. Due to the fact that the isbn attribute is declared to be the standard identifier of Book, it is mandatory
and unique.

2. The isbn attribute has a pattern constraint requiring its values to match the ISBN-10 format that
admits only 10-digit strings or 9-digit strings followed by "X".

3. The title attribute is mandatory, as indicated by its multiplicity expression [1], and has a string
length constraint requiring its values to have at most 50 characters.

12

Constraint Validation

4. The year attribute is mandatory and has an interval constraint, however, of a special form since
the maximum is not fixed, but provided by the calendar function nextYear(), which we implement
as a utility function.

Notice that the edition attribute is not mandatory, but optional, as indicated by its multiplicity expres-
sion [0..1]. In addition to the constraints described in this list, there are the implicit range constraints
defined by assigning the datatype NonEmptyString as range to isbn and title, Integer to year, and
PositiveInteger to edition. In our plain JavaScript approach, all these property constraints are coded
in the model class within property-specific check functions.

The meaning of the design model can be illustrated by a sample data population respecting all con-
straints:

Table 1.1. Sample data for Book

ISBN Title Year Edition

006251587X Weaving the Web 2000 3

0465026567 Gödel, Escher, Bach 1999 2

0465030793 I Am A Strange Loop 2008

6. Summary

1. Constraints are logical conditions on the data of an app. The simplest, and most important, types of
constraints are property constraints and object-level constraints.

2. Constraints should be defined in the model classes of an MVC app, since they are part of their
business semantics.

3. Constraints should be checked in various places of an MVC app: in the UI/view code, in model
classes, and possibly in the database.

4. Software applications that include CRUD data management need to perform two kinds of bi-direc-
tional object-to-string type conversions:

a. Between the model and the UI: converting model object property values to UI widget values,
and, the other way around, converting input widget values to property values. Typically, widgets
are form fields that have string values.

b. Between the model and the datastore: converting model objects to storage data sets (called seri-
alization), and, the other way around, converting storage data sets to model objects (called de-
serialization). This involves converting property values to storage data values, and, the other
way around, converting storage data values to property values. Typically, datastores are either
JavaScript's local storage or IndexedDB, or SQL databases, and objects have to be mapped to
some form of table rows. In the case of an SQL database, this is called "Object-Relational Map-
ping" (ORM).

5. Do not perform any string-to-property-value conversion in the UI code. Rather, this is the business
of the model code.

6. For being able to observe how an app works, or, if it does not work, where it fails, it is essential
to log all critical application events, such as data retrieval, save and delete events, at least in the
JavaScript console.

13

Constraint Validation

7. Responsive validation means that the user, while typing, gets immediate validation feedback on each
input (keystroke), and when requesting to save the new data.

14

Chapter 2. Implementing Constraint Validation
in a Plain JS Web App

1. Introduction

The minimal JavaScript front-end web application that we have discussed in the Minimal App Tutorial
has been limited to support the minimum functionality of a data management app only. For instance, it
did not take care of preventing the user from entering invalid data into the app's database. In this chapter,
we show how to express integrity constraints in a JavaScript model class, and how to perform constraint
validation both in the model part of the app and in the user interface built with HTML5.

We show how to perform responsive validation with the HTML5 form validation API. Since using the
new HTML5 input field types and validation attributes (like required, min, max and pattern) implies
defining constraints in the UI, they are not really useful in a best-practice approach where constraints
are only checked, but not defined, in the UI.

Consequently, we will not use the new HTML5 features for defining constraints in the UI, but only use
two methods of the HTML5 form validation API:

1. setCustomValidity, which allows to mark a form field as either valid or invalid by assigning either
an empty string or a non-empty (constraint violation) message string;

2. checkValidity, which is invoked on a form before user input data is committed or saved (for
instance with a form submission); it tests, if all fields have a valid value.

In the case of two special kinds of attributes, having calendar dates or colors as values, it is desirable
to use the new UI widgets defined by HTML5 for picking a date or picking a color (with corresponding
input field types).

2. New Issues

Compared to the Minimal App discussed in the Minimal App Tutorial we have to deal with a number
of new issues:

1. In the model code we have to add for every property of a class

a. a check function that can be invoked for validating the constraints defined for the property, and

b. a setter method that invokes the check function and is to be used for setting the value of the
property.

2. In the user interface ("view") code we have to take care of

a. responsive validation on user input for providing immediate feedback to the user,

b. validation on form submission for preventing the submission of flawed data to the model layer.

For improving the break-down of the view code, we introduce a utility method (in lib/util.js)
that fills a select form control with option elements the contents of which is retrieved from an
entity table such as Book.instances. This method is used in the setupUserInterface method of
both the updateBook and the deleteBook use cases.

15

http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/Constraint_validation
http://web-engineering.info/tech/JsFrontendApp/MinimalApp/index.html
http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html

Constraint Validation in Plain JS

3. As a namespace approach (for avoiding name conflicts), we will now use ES6 modules, instead of
a global namespace object with subnamespace objects, like pl = {m:{}, v:{}, c:{}}.

Checking the constraints in the user interface (UI) on user input is important for providing immediate
feedback to the user. But it is not safe enough to perform constraint validation only in the UI, because this
could be circumvented in a distributed web application where the UI runs in the web browser of a front-
end device while the application's data is managed by a back-end component on a remote web server.
Consequently, we need multiple constraint validation, first in the UI on input (or on change) and on form
submission, and subsequently in the model layer before saving/sending data to the persistent data store.
And in an application based on a DBMS we may also use a third round of validation before persistent
storage by using the validation mechanisms of the DBMS. This is a must, when the application's database
is shared with other apps.

Our proposed solution to this multiple validation problem is to keep the constraint validation code in
special check functions in the model classes and invoke these functions both in the UI on user input and
on form submission, as well as in the create and update data management methods of the model class via
invoking the setters. Notice that referential integrity constraints (and other relationship constraints) may
also be violated through a delete operation, but in our single-class example we don't have to consider this.

3. Using ES6 Modules

Normal modules are library code files that explicitly export those (variable, function and class) names
that other modules can use (as implicitly frozen like const declarations). A module that is to use items
from another module needs to explicitly import them from that other module using import statements. It
is recommended that all JS module files use the file extension "mjs" for indicating that they are different
from classical script files.

Web pages can load module files, possibly along with classical script files, with the help of a special
type of script element.

The meaning of ES6 modules is based on the following principles:

1. A JS library file can be turned into a module by using "export" for all library items. Other modules
can "import" its items.

2. Any ordinary script file that is to use one or more items from a module has itself to be turned into
a module ("only modules can use modules"). Since it doesn't export anything, such a module could
also be called an "import module".

3. All modules, no matter if they export anything or are just "import modules", are separated from the
global scope in the following sense: they have read access to items from the global scope such as
DOM objects (like document) or other global objects (like Array), but they cannot create any names
(including objects and functions) in the global scope. This implies, for instance, that a JS function
defined in a module cannot be assigned to an onclick event handler attribute in an HTML file..

Using modules implies that we can no longer use the global scope for the names of functions/classes,
which is a restriction that is considered a good practice in software engineering.

An example of a normal (library) module file is util.mjs with the following code:

function isNonEmptyString(x) {

 return typeof(x) === "string" && x.trim() !== "";

}

16

Constraint Validation in Plain JS

...

export { isNonEmptyString, ... };

An example of a module that imports certain items from other modules and then uses them in its own
code, and also exports some of its own items is the model class file Book.mjs with the following im-
port/export statements:

import { isNonEmptyString, ... } from "../../lib/util.mjs";

import { NoConstraintViolation, MandatoryValueConstraintViolation, ... }

 from "../../lib/errorTypes.mjs";

export default function Book(slots) {...}

Since this module only exports one class (Book), a default export us used, allowing simplified imports.

An example of a module that does not export anything, but only imports certain items, is the view code
file createBook.mjs with the following import statements:

import Book from "../../src/m/Book.mjs";

import { fillSelectWithOptions } from "../../lib/util.mjs";

...

An HTML page (here: createBook.html) can load such a module with a special type of script ele-
ment:

<script src="src/v/createBook.mjs" type="module"></script>

Notice that this script element's type attribute is set to "module".

Alternatively, the code of such a module can be embedded in the HTML page like so:

<script type="module">

 import Book from "./src/m/Book.mjs";

 const clearButton = document.getElementById("clearData");

 // Set event handler for the button "clearData"

 clearButton.addEventListener("click", function () {Book.clearData();});

</script>.

4. Make a JavaScript Class Model

Using the information design model shown in Figure 1.2 above as the starting point, we make a
JavaScript class model by performing the following steps:

1. Create a check operation for each (non-derived) property in order to have a central place for imple-
menting all the constraints that have been defined for a property in the design model. For a standard
identifier attribute, such as Book::isbn, two check operations are needed:

a. A basic check operation, such as checkIsbn, for checking all basic constraints of the attribute,
except the mandatory value and the uniqueness constraints.

b. An extended check operation, such as checkIsbnAsId, for checking, in addition to the basic
constraints, the mandatory value and uniqueness constraints that are required for a standard
identifier attribute.

17

Constraint Validation in Plain JS

The checkIsbnAsId operation is invoked on user input for the isbn form field in the create book
form, and also in the setIsbn method, while the checkIsbn operation can be used for testing if a
value satisfies the syntactic constraints defined for an ISBN.

2. Create a setter operation for each (non-derived) single-valued property. In the setter, the corre-
sponding check operation is invoked and the property is only set, if the check does not detect any
constraint violation.

This leads to the JavaScript class model shown on the right-hand side of the mapping arrow in the
following figure.

Figure 2.1. From an information design model to a JS class model

isbn[1] : NonEmptyString {id}
title[1] : NonEmptyString(50)
year[1] : Integer
edition[0..1] : PositiveInteger

Book

«invariant»
{year > 1454 AND
year <= nextYear()}

«invariant»
{isbn must be a 10-digit string
or a 9-digit string followed by "X"}

checkIsbn(in isbn : String) : ConstraintViolation
checkIsbnAsId(in isbn : String) : ConstraintViolation
setIsbn(in isbn : String)
checkTitle(in title : String) : ConstraintViolation
setTitle(in title : String)
checkYear(in year : Integer) : ConstraintViolation
setYear(in year : Integer)
checkEdition(in ed : PositiveInteger) : ConstraintViolation
setEdition(in ed : PositiveInteger)

isbn[1] : string {id}
title[1] : string {NonEmptyString(50)}
year[1] : number {Integer}
edition[0..1] : number {PositiveInteger}

Book

Essentially, the JS class model extends the design model by adding checks and setters for each property.
The attached invariants have been dropped since they are taken care of in the checks. Property ranges
have been turned into JavaScript datatypes (with a reminder to their real range in curly braces). Notice
that the names of check functions are underlined, since this is the convention in UML for class-level
(as opposed to instance-level) operations.

5. Set up the Folder Structure

The folder structure of the validation app extends the folder structure of the minimal app by adding
two subfolders:

1. a css folder containing CSS style files for styling the user interface pages of the app;

2. a lib folder containing the code library files errorTypes.mjs and util.mjs.

Thus, we get the following folder structure:

publicLibrary

 css

 main.css

 normalize.css

 lib

 errorTypes.mjs

 util.mjs

 src

18

Constraint Validation in Plain JS

 m

 v

 index.html

Notice that the src folder only contains two subfolders m and v (for model and view), as we have dropped
the c folder since the minimal app's controller code for defining namespace objects is no longer needed
due to the use of ES6 modules.

We discuss the contents of the added library files in the following subsections.

5.1. Provide utility functions and error classes in library files

We add two library files (in the form of ES6 modules) to the lib folder:

1. util.js contains the definitions of a few utility functions such as isNonEmptyString(x) for testing
if x is a non-empty string.

2. errorTypes.js defines classes for error (or exception) types corresponding to the basic types
of property constraints discussed above: StringLengthConstraintViolation, MandatoryValueCon-
straintViolation, RangeConstraintViolation, IntervalConstraintViolation, PatternConstraintViola-
tion, UniquenessConstraintViolation. In addition, a class NoConstraintViolation is defined for being
able to return a validation result object in the case of no constraint violation.

5.2. Create a start page

The start page index.html takes care of loading CSS style files with the help of the following two
link elements:

<link rel="stylesheet" href="css/normalize.css">

<link rel="stylesheet" href="css/main.css">

The first CSS file (normalize.css) is a widely used collection of style normalization rules making
browsers render all HTML elements more consistently. The second file (main.css) contains the specific
styles of the app's user interface (UI) pages.

Since the app's start page does not provide much UI functionality, but only a few navigation links and
two buttons, only a few lines of code are needed for setting up the buttons' event listeners. This is taken
care of in an embedded script element of type module:

<script type="module">

 import Book from "./src/m/Book.mjs";

 const clearButton = document.getElementById("clearData"),

 generateTestDataButtons = document.querySelectorAll("button.generateTestData");

 // Set event handler for the button "clearData"

 clearButton.addEventListener("click", function () {Book.clearData();});

 generateTestDataButtons.forEach(function (el) {

 el.addEventListener("click", function () {Book.generateTestData();})

 });

</script>.

Notice how the Book class is loaded by importing the module Book.js from the src/m folder.

19

https://necolas.github.io/normalize.css/

Constraint Validation in Plain JS

6. Write the Model Code

The JS class model shown on the right hand side in Figure 2.1 can be coded step by step for getting the
code of the model layer of our JavaScript front-end app. These steps are summarized in the following
section.

6.1. Summary

1. Code the model class as a JavaScript constructor function.

2. Code the check functions, such as checkIsbn or checkTitle, in the form of class-level ('static')
methods. Take care that all constraints, as specified in the JS class model, are properly coded in
the check functions.

3. Code the setter operations, such as setIsbn or setTitle, as (instance-level) methods. In the setter,
the corresponding check operation is invoked and the property is only set, if the check does not
detect any constraint violation.

4. Code the add and remove operations, if there are any, as instance-level methods.

These steps are discussed in more detail in the following sections.

6.2. Code the model class as a constructor function

The class Book is coded as a corresponding constructor function with the same name Book such that
all its (non-derived) properties are supplied with values from corresponding key-value slots of a slots
parameter.

function Book(slots) {

 // assign default values

 this.isbn = ""; // string

 this.title = ""; // string

 this.year = 0; // number (int)

 // assign properties only if the constructor is invoked with an argument

 if (arguments.length > 0) {

 this.setIsbn(slots.isbn);

 this.setTitle(slots.title);

 this.setYear(slots.year);

 // optional property

 if (slots.edition) this.setEdition(slots.edition);

 }

};

In the constructor body, we first assign default values to the class properties. These values will be used
when the constructor is invoked as a default constructor (without arguments), or when it is invoked with
only some arguments. It is helpful to indicate the range of a property in a comment. This requires to
map the platform-independent datatypes of the information design model to the corresponding implicit
JavaScript datatypes according to the following table.

Table 2.1. Datatype mapping

Platform-independent
datatype

JavaScript datatype SQL

String string CHAR(n) or VARCHAR(n)

20

Constraint Validation in Plain JS

Platform-independent
datatype

JavaScript datatype SQL

Integer number (int) INTEGER

Decimal number (float) REAL, DOUBLE PRECISION
or DECIMAL(p,s)

Boolean boolean BOOLEAN

Date Date DATE

Since the setters may throw constraint violation errors, the constructor function, and any setter, should
be called in a try-catch block where the catch clause takes care of processing errors (at least logging
suitable error messages).

As in the minimal app, we add a class-level property Book.instances representing the collection of all
Book instances managed by the app in the form of an entity table:

Book.instances = {};

6.3. Code the property checks

Code the property check functions in the form of class-level ('static') methods. In JavaScript, this means
to define them as method slots of the constructor, as in Book.checkIsbn (recall that a constructor is a
JS object, since in JavaScript, functions are objects, and as an object, it can have slots).

Take care that all constraints of a property as specified in the class model are properly coded in its
check function. This concerns, in particular, the mandatory value and uniqueness constraints implied by
the standard identifier declaration (with {id}), and the mandatory value constraints for all properties
with multiplicity 1, which is the default when no multiplicity is shown. If any constraint is violated,
an error object instantiating one of the error classes listed above in Section 5.1 and defined in the file
errorTypes.js is returned.

For instance, for the checkIsbn operation we obtain the following code:

Book.checkIsbn = function (id) {

 if (!id) {

 return new NoConstraintViolation();

 } else if (typeof id !== "string" || id.trim() === "") {

 return new RangeConstraintViolation(

 "The ISBN must be a non-empty string!");

 } else if (!/\b\d{9}(\d|X)\b/.test(id)) {

 return new PatternConstraintViolation(

 "The ISBN must be a 10-digit string or "+

 " a 9-digit string followed by 'X'!");

 } else {

 return new NoConstraintViolation();

 }

};

Notice that, since isbn is the standard identifier attribute of Book, we only check the syntactic constraints
in checkIsbn, but we check the mandatory value and uniqueness constraints in checkIsbnAsId, which
itself first invokes checkIsbn:

21

Constraint Validation in Plain JS

Book.checkIsbnAsId = function (id) {

 var constraintViolation = Book.checkIsbn(id);

 if ((constraintViolation instanceof NoConstraintViolation)) {

 if (!id) {

 constraintViolation = new MandatoryValueConstraintViolation(

 "A value for the ISBN must be provided!");

 } else if (Book.instances[id]) {

 constraintViolation = new UniquenessConstraintViolation(

 "There is already a book record with this ISBN!");

 } else {

 constraintViolation = new NoConstraintViolation();

 }

 }

 return constraintViolation;

};

We assume that all check functions and setters can deal both with proper data values (that are of the
attribute's range type) and also with string values that are supposed to represent proper data values, but
have not yet been converted to the attribute's range type. We take this approach for avoiding datatype
conversions in the user interface ("view") code. Notice that all data entered by a user in an HTML form
field is of type String and must be converted (or de-serialized) before its validity can be checked and
it can be assigned to the corresponding property. It is preferable to perform these type conversions in
the model code, and not in the user interface code..

For instance, in our example app, we have the integer-valued attribute year. When the user has entered
a value for this attribute in a corresponding form field, in the Create or Update user interface, the form
field holds a string value. This value is passed to the Book.add or Book.update method, which invokes
the setYear and checkYear methods. Only after being validated, this string value is converted to an
integer and assigned to the year attribute.

6.4. Code the property setters

Code the setter operations as (instance-level) methods. In the setter, the corresponding check function
is invoked and the property is only set, if the check does not detect any constraint violation. Otherwise,
the constraint violation error object returned by the check function is thrown. For instance, the setIsbn
operation is coded in the following way:

Book.prototype.setIsbn = function (id) {

 const validationResult = Book.checkIsbnAsId(id);

 if (validationResult instanceof NoConstraintViolation) {

 this.isbn = id;

 } else {

 throw validationResult;

 }

};

There are similar setters for the other properties (title, year and edition).

6.5. Add a serialization function

It is helpful to have an object serialization function tailored to the structure of an object (as defined by its
class) such that the result of serializing an object is a human-readable string representation of the object

22

Constraint Validation in Plain JS

showing all relevant information items of it. By convention, these functions are called toString(). In
the case of the Book class, we use the following code:

Book.prototype.toString = function () {

 var bookStr = `Book{ ISBN: ${this.isbn}, title: ${this.title}, year: ${this.year}`;

 if (this.edition) bookStr += `, edition: ${this.edition}`;

 return bookStr;

};

6.6. Data management operations

In addition to defining the model class in the form of a constructor function with property definitions,
checks and setters, as well as a toString() serialization function, we also need to define the following
data management operations as class-level methods of the model class:

1. Book.convertRec2Obj and Book.retrieveAll for loading all managed Book instances from the
persistent data store.

2. Book.saveAll for saving all managed Book instances to the persistent data store.

3. Book.add for creating a new Book instance and adding it to the collection of all Book instances.

4. Book.update for updating an existing Book instance.

5. Book.destroy for deleting a Book instance.

6. Book.createTestData for creating a few sample book records to be used as test data.

7. Book.clearData for clearing the book data store.

All of these methods essentially have the same code as in our minimal app discussed in Part 1, except
that now

1. we may have to catch constraint violations in suitable try-catch blocks in the Book procedures con-
vertRec2Obj, add, update and createTestData;

2. we create more informative status and error log messages for better observing what's going on; and

3. we can use the toString() function for serializing an object in status and error messages.

Notice that for the change operations add (create) and update, we need to implement an all-or-nothing
policy: whenever there is a constraint violation for a property, no new object must be created and no
(partial) update of the affected object must be performed.

When a constraint violation is detected in one of the setters called when new Book(...) is invoked in
Book.add, the object creation attempt fails, and instead a constraint violation error message is created.
Otherwise, the new book object is added to Book.instances and a status message is created, as shown
in the following program listing:

Book.add = function (slots) {

 var book = null;

 try {

 book = new Book(slots);

 } catch (e) {

23

Constraint Validation in Plain JS

 console.log(`${e.constructor.name}: ${e.message}`);

 book = null;

 }

 if (book) {

 Book.instances[book.isbn] = book;

 console.log(`${book.toString()} created!`);

 }

};

When an object of a model class is to be updated, we first create a clone of it for being able to restore
it if the update attempt fails. In the object update attempt, we only assign those properties of the object
the value of which has changed, and we report this in a status log.

Normally, all properties defined by a model class, except the standard identifier attribute, can be updated.
It is, however, possible to also allow updating the standard identifier attribute. This requires special care
for making sure that all references to the given object via its old standard identifier are updated as well.

When a constraint violation is detected in one of the setters invoked in Book.update, the object update
attempt fails, and instead the error message of the constraint violation object thrown by the setter and
caught in the update method is shown, and the previous state of the object is restored. Otherwise, a
status message is created, as shown in the following program listing:

Book.update = function (slots) {

 var noConstraintViolated = true,

 updatedProperties = [];

 const book = Book.instances[slots.isbn],

 objectBeforeUpdate = cloneObject(book);

 try {

 if (book.title !== slots.title) {

 book.setTitle(slots.title);

 updatedProperties.push("title");

 }

 if (book.year !== parseInt(slots.year)) {

 book.setYear(slots.year);

 updatedProperties.push("year");

 }

 if (slots.edition && slots.edition !== book.edition) {

 // slots.edition has a non-empty value that is new

 book.setEdition(slots.edition);

 updatedProperties.push("edition");

 } else if (!slots.edition && book.edition !== undefined) {

 // slots.edition has an empty value that is new

 delete book.edition; // unset the property "edition"

 updatedProperties.push("edition");

 }

 } catch (e) {...}

 ...

};

Notice that optional properties, like edition, need to be treated in a special way. If the user doesn't
enter any value for them in a Create or Update user interface, the form field's value is the empty string
"". In the case of an optional property, this means that the property is not assigned a value in the add
use case, or that it is unset if it has had a value in the update use case. This is different from the case

24

Constraint Validation in Plain JS

of a mandatory property, where the empty string value obtained from an empty form field may or may
not be an admissible value.

If there is a constraint violation exception, an error message is written to the log and the object concerned
is reset to its previous state:

Book.update = function (slots) {

 ...

 try {

 ...

 } catch (e) {

 console.log(e.constructor.name +": "+ e.message);

 noConstraintViolated = false;

 // restore object to its state before updating

 Book.instances[slots.isbn] = objectBeforeUpdate;

 }

 if (noConstraintViolated) {

 if (updatedProperties.length > 0) {

 console.log(`Properties ${updatedProperties.toString()}` +

 `modified for book ${slots.isbn}`);

 } else {

 console.log(`No property value changed for book ${slots.isbn}!`);

 }

 }

};

7. Write the View Code

The user interface (UI) consists of a start page index.html that allows the user choosing one of the da-
ta management operations by navigating to the corresponding UI page such as retrieveAndListAll-
Books.html or createBook.html in the app folder.

The start page index.html has been discussed above in Section 5.2. It sets up two buttons for clearing
the app's database by invoking the procedure Book.clearData() and for creating sample data by in-
voking the procedure Book.createTestData() from the buttons' click event listeners.

Each data management UI page loads the same basic CSS and JavaScript files like the start page in-
dex.html discussed above. In addition, it loads a use-case-specific view code file src/v/useCase.js.

For setting up the user interfaces of the data management use cases, we have to distinguish the case of
"Retrieve/List All" from the other ones (Create, Update, Delete). While the latter ones require using an
HTML form and attaching event handlers to form controls, in the case of "Retrieve/List All" we only
have to render a table displaying all books, as in the case of the Minimal App discussed in Part 1 of
this tutorial.

For the Create, Update and Delete use cases, we need to (1) import the Book class, (2) define variables
for accessing the UI form element and the save/delete button, and (3) load all book records, like so:

import Book from "../m/Book.mjs";

const formEl = document.forms["Book"],

 saveButton = formEl["commit"];

Book.retrieveAll(); // load all book records

25

http://web-engineering.info/tech/JsFrontendApp/MinimalApp-with-CSS/index.html

Constraint Validation in Plain JS

...and then add event listeners for:

1. responsive validation on form field input events,

2. handling the event when the user clicks (or pushes) the save (or delete) button,

3. making sure the main memory data is saved when a beforeunload event occurs, that is, when the
browser window/tab is closed.

7.1. Set up the user interface for Create Book

For the use case Create, we obtain the following code (in v/createBook.mjs) for adding event listeners
for responsive validation:

formEl.isbn.addEventListener("input", function () {formEl.isbn.setCustomValidity(

 Book.checkIsbnAsId(formEl.isbn.value).message);

});

formEl.title.addEventListener("input", function () {formEl.title.setCustomValidity(

 Book.checkTitle(formEl.title.value).message);

});

formEl.year.addEventListener("input", function () {formEl.year.setCustomValidity(

 Book.checkYear(formEl.year.value).message);

});

formEl.edition.addEventListener("input", function () {formEl.edition.setCustomValidity(

 Book.checkEdition(formEl.edition.value).message);

});

Notice that for each input field we add a listener for input events, such that on any user input a vali-
dation check is performed because input events are created by user input actions such as typing. We
use the predefined function setCustomValidity from the HTML5 form validation API for having our
property check functions invoked on the current value of the form field and returning an error message in
the case of a constraint violation. So, whenever the string represented by the expression Book.check-
Isbn(formEl.isbn.value).message is empty, everything is fine. Otherwise, if it represents an error
message, the browser indicates the constraint violation to the user by rendering a red outline for the
form field concerned (due to our CSS rule for the :invalid pseudo class).

In addition to the event handlers for responsive constraint validation, we need two more event handlers:
one for validation on form data submission and one for the event when the browser window (or tab)
is closed.

While the validation on user input enhances the usability of the UI by providing immediate feedback
to the user, validation on form data submission is even more important for catching invalid data. In
the form data submission event handler, the property checks are performed again (with the help of
setCustomValidity), as shown in the following program listing:

saveButton.addEventListener("click", function () {

 const slots = { isbn: formEl.isbn.value,

 title: formEl.title.value,

 year: formEl.year.value };

 // set error messages in case of constraint violations

 formEl.isbn.setCustomValidity(

 Book.checkIsbnAsId(slots.isbn).message);

 formEl.title.setCustomValidity(

26

Constraint Validation in Plain JS

 Book.checkTitle(slots.title).message);

 formEl.year.setCustomValidity(

 Book.checkYear(slots.year).message);

 if (formEl.edition.value) {

 slots.edition = formEl.edition.value;

 formEl.edition.setCustomValidity(

 Book.checkEdition(slots.edition).message);

 }

 // save the input data only if all of the form fields are valid

 if (formEl.checkValidity()) Book.add(slots);

});

By invoking checkValidity() on the form element, we make sure that the form data is only saved (by
Book.add), if there is no constraint violation. After this event handler has been executed on an invalid
form, the browser takes control and tests if the predefined property validity has an error flag for any
form field. In our approach, since we use setCustomValidity, the validity.customError would be
true. If this is the case, the custom constraint violation message will be displayed (in a bubble).

Since the Save button has the type "submit", clicking it creates a submit event. For suppressing the
browser's built-in submit event processing, we invoke the DOM operation preventDefault in a submit
event handler like so:

formEl.addEventListener("submit", function (e) {

 e.preventDefault();

 formEl.reset();

});

Finally, still in the module v/createBook.mjs, we set a handler for the event when the browser window
(or tab) is closed, taking care to save all data to persistent storage:

window.addEventListener("beforeunload", Book.saveAll);

7.2. Set up the user interface for Update Book

In the UI of the use case Update, which is handled in v/updateBook.mjs, we do not have an input, but
rather an output field for the standard identifier attribute isbn, since it is not supposed to be modifiable.
Consequently, we don't need to validate any user input for it. However, we need to set up a selection
list (in the form of an HTML select element) allowing the user to select a book in the first step, before
its data can be modified. This requires to add a change event listener on the select element such that
the fields of the HTML form can be filled with the data of the selected object, as taken care of by the
following code:

const formEl = document.forms["Book"],

 saveButton = formEl["commit"],

 selectBookEl = formEl["selectBook"];

// set up the book selection list

fillSelectWithOptions(Book.instances, selectBookEl, "isbn", "title");

// when a book is selected, populate the form with its data

selectBookEl.addEventListener("change", function () {

 const bookKey = selectBookEl.value;

 if (bookKey) { // set form fields

 const book = Book.instances[bookKey];

27

Constraint Validation in Plain JS

 ["isbn","title","year","edition"].forEach(function (p) {

 formEl[p].value = book[p] ? book[p] : "";

 // delete previous custom validation error message

 formEl[p].setCustomValidity("");

 });

 } else {

 formEl.reset();

 }

});

There is no need to set up responsive validation for the standard identifier attribute isbn, but for all
other form fields, as shown above for the Create use case.

The logic of v/deleteBook.mjs for the Delete use case is similar. We only need to take care that
the object to be deleted can be selected by providing a selection list, like in the Update use case. No
validation is needed for the Delete use case.

You can run the validation app from our server or download the code as a ZIP archive file.

8. Possible Variations and Extensions

8.1. Adding an object-level validation function

When object-level validation (across two or more properties) is required for a model class, we can add
a custom validation function validate to it, such that object-level validation can be performed before
save by invoking validate on the object concerned. For instance, for expressing the constraint defined
in the class model shown in Figure 1.1, we define the following validation function:

Author.prototype.validate = function () {

 if (this.dateOfDeath && this.dateOfDeath < this.dateOfBirth) {

 throw new ConstraintViolation(

 "The dateOfDeath must be after the dateOfBirth!");

 }

};

When a validate function has been defined for a model class, it can be invoked in the create and update
methods. For instance,

Author.add = function (slots) {

 var author = null;

 try {

 author = new Author(slots);

 author.validate();

 } catch (e) {

 console.log(e.constructor.name +": "+ e.message);

 }

};

8.2. Using implicit JS setters

Since ES5, JavaScript has its own form of setters, which are implicit and allow having the same se-
mantics as explicit setter methods, but with the simple syntax of direct access. In addition to having

28

http://web-engineering.info/tech/JsFrontendApp/ValidationApp/index.html
http://web-engineering.info/tech/JsFrontendApp/ValidationApp.zip

Constraint Validation in Plain JS

the advantage of a simpler syntax, implicit JS setters are also safer than explicit setters because they
decrease the likelihood of a programmer circumventing a setter by using a direct property assignment
when instead a setter should be used. In other OOP languages, like Java, this is prevented by declaring
properties to be 'private'. But JavaScript does not have this option.

The following code defines implicit setter and getter methods for the property title:

Object.defineProperty(Book.prototype, "title", {

 set: function(t) {

 var validationResult = Book.checkTitle(t);

 if (validationResult instanceof NoConstraintViolation) {

 this._title = t;

 } else {

 throw validationResult;

 }

 },

 get: function() {

 return this._title;

 }

});

Notice that, also in the constructor definition, the internal property _title, used for storing the property
value, is not used for setting/getting it, but rather the virtual property title:

Book = function (slots) {

 this.learnUnitNo = 0;

 this.title = "";

 if (arguments.length > 0) {

 this.learnUnitNo = slots.learnUnitNo;

 this.title = slots.title;

 // optional property

 if (slots.subjectArea) this.subjectArea = slots.subjectArea;

 }

});

We will start using implicit setter and getter methods, along with ES2015 class definitions, in our 3rd
tutorial on enumeration attributes.

9. Points of Attention

9.1. Boilerplate code

An issue with the do-it-yourself code of this example app is the boilerplate code needed

1. per model class for the storage management methods add, update, destroy, etc.;

2. per model class and property for getters, setters and validation checks.

While it is good to write this code a few times for learning app development, you don't want to write
it again and again later when you work on real projects. In our mODELcLASSjs tutorial, we present
an approach how to put these methods in a generic form in a meta-class, such that they can be reused
in all model classes of an app.

29

http://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html

Constraint Validation in Plain JS

9.2. Configuring the UI for preventing invalid user input

Many of the new HTML5 input field types (like number, tel, email, url, date (together with date-
time-local, time and month) or color) are intended to allow web browsers rendering corresponding
input elements in the form of UI widgets (like a date picker or a color picker) that limit the user's input
options such that only valid input is possible. In terms of usability, it's preferable to prevent users from
entering invalid data instead of allowing to enter it and only then checking its validity and reporting
errors.

Input fields for decimal number input should not be defined like

<input type="number" name="..." />

but rather like

<input type="text" inputmode="decimal" name="..." />

because this provides for a better user experience on mobile phones.

9.3. Improving the user experience by showing helpful auto-complete
suggestions

While browsers have heuristics for showing auto-complete suggestions, you cannot rely on them, and
should better add the autocomplete attribute with a suitable value. For instance, in iOS Safari, setting
the input type to "tel" does only show auto-complete suggestions if autocomplete="tel" is added.

HTML5 defines more than 50 possible values for the autocomplete attribute. So, you have to make an
effort looking up the one that best suits your purposes.

You can also create your own custom auto-complete functionality with datalist.

10. Practice Project

The purpose of the app to be built is managing information about movies. Like in the book data man-
agement app discussed in the tutorial, you can make the simplifying assumption that all the data can be
kept in main memory. Persistent data storage is implemented with JavaScript's Local Storage API.

The app deals with just one object type: Movie, as depicted in Figure 2.2 below. In the subsequent parts
of the tutorial, you will extend this simple app by adding enumeration-valued attributes, as well as actors
and directors as further model classes, and the associations between them.

Figure 2.2. The object type Movie defined with several constraints

movieId[1] : PositiveInteger {id}
title[1] : NonEmptyString(120)
releaseDate[0..1] : Date

Movie

«invariant»
{releaseDate >= 1895-12-28}

In this model, the following constraints have been expressed:

30

https://html.spec.whatwg.org/multipage/form-control-infrastructure.html%23inappropriate-for-the-control
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/datalist

Constraint Validation in Plain JS

1. Due to the fact that the movieId attribute is declared to be the standard identifier of Movie, as
expressed by the property annotation {id} shown after the property range, it is mandatory and
unique.

2. The title attribute is mandatory, as indicated by its multiplicity expression [1], and has a string
length constraint requiring its values to have at most 120 characters.

3. The releaseDate attribute has an interval constraint: it must be greater than or equal to 1895-12-28.

Notice that the releaseDate attribute is not mandatory, but optional, as indicated by its multiplicity
expression [0..1]. In addition to the constraints described in this list, there are the implicit range con-
straints defined by assigning the datatype PositiveInteger to movieId, NonEmptyString to title,
and Date to releaseDate. In our plain JavaScript approach, all these property constraints are coded in
the model class within property-specific check functions.

Following the tutorial, you have to take care of

1. adding for every property a check function that validates the constraints defined for the property, and
a setter method that invokes the check function and is to be used for setting the value of the property,

2. performing validation before any data is saved in the Movie.add and Movie.update methods.

in the model code of your app, while In the user interface ("view") code you have to take care of

1. styling the user interface with CSS rules (by integrating a CSS library such as Yahoo's Pure CSS),

2. validation on user input for providing immediate feedback to the user,

3. validation on form submission for preventing the submission of invalid data.

You can use the following sample data for testing your app:

Table 2.2. Sample data

Movie ID Title Release date

1 Pulp Fiction 1994-05-12

2 Star Wars 1977-05-25

3 Casablanca 1943-01-23

4 The Godfather 1972-03-15

In this project, and in all further projects, you have to make sure that your pages comply with the XML
syntax of HTML5 (by means of XHTML5 validation), and that your JavaScript code complies with our
Coding Guidelines and is checked with JSHint (http://www.jshint.com).

If you have any questions about how to carry out this project, you can ask them on our discussion forum.

31

http://oxygen.informatik.tu-cottbus.de/webeng/Coding-Guidelines.html
http://www.jshint.com/
http://web-engineering.info/forum/12

	JavaScript Front-End Web App Tutorial Part 2: Adding Constraint Validation
	Table of Contents
	Foreword
	Chapter 1. Integrity Constraints and Data Validation
	1. Introduction
	2. Integrity Constraints
	2.1. String Length Constraints
	2.2. Mandatory Value Constraints
	2.3. Range Constraints
	2.4. Interval Constraints
	2.5. Pattern Constraints
	2.6. Cardinality Constraints
	2.7. Uniqueness Constraints
	2.8. Standard Identifiers (Primary Keys)
	2.9. Referential Integrity Constraints
	2.10. Frozen and Read-Only Value Constraints
	2.11. Beyond property constraints

	3. Responsive Validation
	4. Constraint Validation in MVC Applications
	5. Adding Constraints to a Design Model
	6. Summary

	Chapter 2. Implementing Constraint Validation in a Plain JS Web App
	1. Introduction
	2. New Issues
	3. Using ES6 Modules
	4. Make a JavaScript Class Model
	5. Set up the Folder Structure
	5.1. Provide utility functions and error classes in library files
	5.2. Create a start page

	6. Write the Model Code
	6.1. Summary
	6.2. Code the model class as a constructor function
	6.3. Code the property checks
	6.4. Code the property setters
	6.5. Add a serialization function
	6.6. Data management operations

	7. Write the View Code
	7.1. Set up the user interface for Create Book
	7.2. Set up the user interface for Update Book

	8. Possible Variations and Extensions
	8.1. Adding an object-level validation function
	8.2. Using implicit JS setters

	9. Points of Attention
	9.1. Boilerplate code
	9.2. Configuring the UI for preventing invalid user input
	9.3. Improving the user experience by showing helpful auto-complete suggestions

	10. Practice Project

