
JavaScript Front-End
Web App Tutorial Part 6:

Inheritance in Class Hierarchies
Learn how to deal with inheritance in
class hierarchies, such as TextBook

and Biography as subclasses of Book

Gerd Wagner <G.Wagner@b-tu.de>

JavaScript Front-End Web App Tutorial Part 6: Inheritance in
Class Hierarchies: Learn how to deal with inheritance in class
hierarchies, such as TextBook and Biography as subclasses of
Book
by Gerd Wagner

Warning: This tutorial manuscript may still contain errors and may still be incomplete in certain respects. Please
report any issue to Gerd Wagner at G.Wagner@b-tu.de.

This tutorial is also available in the following formats: PDF [subtyping-tutorial.pdf]. You may run the example
app [6-SubtypingApp/index.html] from our server, or download it as a ZIP archive file [6-SubtypingApp.zip]. See
also our Web Engineering project page [http://web-engineering.info/].

Publication date 2021-05-12
Copyright © 2014-2021 Gerd Wagner

This tutorial article, along with any associated source code, is licensed under The Code Project Open License (CPOL) [http://
www.codeproject.com/info/cpol10.aspx], implying that the associated code is provided "as-is", can be modified to create derivative works, can
be redistributed, and can be used in commercial applications, but the article must not be distributed or republished without the author's consent.

6-SubtypingApp/index.html
6-SubtypingApp/index.html
6-SubtypingApp/index.html
6-SubtypingApp.zip
6-SubtypingApp.zip
http://web-engineering.info/
http://web-engineering.info/
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/info/cpol10.aspx

iii

Table of Contents
Foreword .. v
1. Subtyping and Inheritance ... 1

1. Introducing Subtypes by Specialization .. 1
2. Introducing Supertypes by Generalization .. 2
3. Intension versus Extension .. 3
4. Type Hierarchies ... 4
5. The Class Hierarchy Merge Design Pattern ... 5
6. Subtyping and Inheritance in Computational Languages .. 6

6.1. Subtyping and inheritance in OOP .. 6
6.2. Subtyping and inheritance with XML Schema ... 7
6.3. Subtyping and inheritance with OWL ... 8
6.4. Representing class hierarchies with SQL database tables .. 8

7. Quiz Questions ... 14
7.1. Question 1: Statements about a Class Hierarchy ... 14
7.2. Question 2: Class Hierarchy Merge ... 15
7.3. Question 3: Multiple Inheritance ... 16
7.4. Question 4: Two ways of subtyping .. 16
7.5. Question 5: Vehicle Class Hierarchy ... 16

2. Subtyping with Plain JS .. 18
1. Subtyping with ES6 Classes .. 18
2. Case Study 1: Eliminating a Class Hierarchy .. 20

2.1. Make the JS class model .. 20
2.2. New issues ... 21
2.3. Code the model classes of the JS class model .. 22
2.4. Write the User Interface Code ... 25

3. Case Study 2: Implementing a Class Hierarchy ... 26
3.1. Make a JS class model ... 27
3.2. Make a JS entity table model .. 27
3.3. New issues ... 29
3.4. Code the model classes of the JS class model .. 30
3.5. Take care of subtypes in the UI .. 31

4. Quiz Questions ... 32
4.1. Question 1: Defining a Subclass ... 32
4.2. Question 2: Merging Subclasses .. 33
4.3. Question 3: Check Method for Segment Property ... 34

5. Practice Project ... 34

iv

List of Figures
1.1. The object type Book with two subtypes: TextBook and Biography 1
1.2. The object types Employee and Author share several attributes ... 2
1.3. Employee and Author are generalized by Person ... 2
1.4. An information model with two class hierarchies ... 3
1.5. A class hierarchy having the root class Vehicle ... 4
1.6. A multiple inheritance hierarchy ... 4
1.7. The result of applying the Class Hierarchy Merge design pattern .. 6
1.8. An information design model with a Person roles hierarchy .. 9
1.9. An SQL table model with a single table representing the Book class hierarchy 10
1.10. An STI table model representing the Person roles hierarchy ... 11
1.11. A TCI table model representing the Person roles hierarchy .. 12
1.12. A JTI table model representing the Person roles hierarchy ... 13
2.1. The JS class model of the merged Book class hierarchy .. 21
2.2. The JS class model of the Person roles class hierarchy .. 27
2.3. An STI model of the Person roles class hierarchy ... 28
2.4. A TCI model of the Person roles class hierarchy .. 29

v

Foreword
This tutorial is Part 6 of our series of six tutorials [http://web-engineering.info/JsFrontendApp] about
model-based development of front-end web applications with plain JavaScript. It shows how to build a
web app that manages subtype (inheritance) relationships between object types.

The app supports the four standard data management operations (Create/Retrieve/Update/Delete). It
is based on the example used in the other parts, with the object types Book, Person, Author,
Employee and Manager. The other parts are:

• Part 1 [http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html]: Building a minimal
app.

• Part 2 [http://web-engineering.info/tech/JsFrontendApp/validation-tutorial.html]: Handling
constraint validation.

• Part 3 [http://web-engineering.info/tech/JsFrontendApp/enumeration-tutorial.html]: Dealing with
enumerations.

• Part 4 [http://web-engineering.info/tech/JsFrontendApp/unidirectional-association-tutorial.html]:
Managing unidirectional associations, such as the associations between books and publishers,
assigning a publisher to a book, and between books and authors, assigning authors to a book.

• Part 5 [http://web-engineering.info/tech/JsFrontendApp/bidirectional-association-tutorial.html]:
Managing bidirectional associations, such as the associations between books and publishers and
between books and authors, also assigning books to authors and to publishers.

You may also want to take a look at our open access book Building Front-End Web Apps with Plain
JavaScript [http://web-engineering.info/JsFrontendApp-Book], which includes all parts of the tutorial
in one document, dealing with multiple object types ("books", "publishers" and "authors") and taking
care of constraint validation, associations and subtypes/inheritance.

http://web-engineering.info/JsFrontendApp
http://web-engineering.info/JsFrontendApp
http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/validation-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/validation-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/enumeration-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/enumeration-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/unidirectional-association-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/unidirectional-association-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/bidirectional-association-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/bidirectional-association-tutorial.html
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book

1

Chapter 1. Subtyping and Inheritance
The concept of a subtype, or subclass, is a fundamental concept in natural language, mathematics, and
informatics. For instance, in English, we say that a bird is an animal, or the class of all birds is a subclass
of the class of all animals. In linguistics, the noun "bird" is a hyponym of the noun "animal".

An object type may be specialized by subtypes (for instance, Bird is specialized by Parrot) or
generalized by supertypes (for instance, Bird and Mammal are generalized by Animal). Specialization
and generalization are two sides of the same coin.

A subtype inherits all features from its supertypes. When a subtype inherits attributes, associations
and constraints from a supertype, this means that these features need not be repeatedly rendered for
the subtype in the class diagram, but the reader of the diagram has to understand that all features of a
supertype also apply to its subtypes.

When an object type has more than one direct supertype, we have a case of multiple inheritance, which
is common in conceptual modeling, but prohibited in many object-oriented programming languages,
such as Java and C#, which only allow class hierarchies with a unique direct supertype for each object
type.

1. Introducing Subtypes by Specialization
A new object type may be introduced by specialization whenever it represents a special case of
another object type. We illustrate this for our example model where we want to capture text books and
biographies as special cases of books. This means that text books and biographies also have an ISBN, a
title and a publishing year, but in addition they have further features such as the attribute subjectArea
for text books and the attribute about for biographies. Consequently, in Figure 1.1, we introduce the
object types TextBook and Biography by specializing the object type Book, that is, as subtypes
of Book.

Figure 1.1. The object type Book with two subtypes: TextBook and Biography

isbn : String {id}
title : String
year : Integer

Book

subjectArea : String

TextBook
about : String

Biography

{disjoint, rigid}

When specializing an object type, we define additional features for the newly added subtype. In many
cases, these additional features are more specific properties. For instance, in the case of TextBook
specializing Book, we define the additional attribute subjectArea. In some programming languages,
such as in Java, it is therefore said that the subtype extends the supertype.

However, we can also specialize an object type without defining additional properties or operations/
methods, but by defining additional constraints.

Subtyping and Inheritance

2

2. Introducing Supertypes by
Generalization
We illustrate generalization with the example model shown in Figure 1.2.

Figure 1.2. The object types Employee and Author share several attributes

authorId[1] : Integer {id}
name[1] : String
dateOfBirth[1] : Date
dateOfDeath[0..1] : Date
biography[1] : Text

Author

isbn : String {id}
title : String
year : Integer

Book

* *
name : String {id}
address : String

Publisher

0..1 *

authored
Books

published
Books

employeeNo : Integer {id}
name : String
dateOfBirth : Date
salary : Decimal

Employee

*
0..1

After adding the object type Employee we notice that Employee and Author share a number of
attributes due to the fact that both employees and authors are people, and being an employee as well as
being an author are roles played by people. So, we may generalize these two object types by adding a
joint supertype Person, as shown in the diagram of Figure 1.3.

Figure 1.3. Employee and Author are generalized by Person

biography : Text

Authorisbn : String {id}
title : String
year : Integer

Book

* *
name : String {id}
address : String

Publisher

0..1 *

authored
Books

published
Books

employeeNo : Integer {key}
salary : Decimal

Employee

*
0..1

personId[1] : Integer {id}
name[1] : String
dateOfBirth[1] : Date
dateOfDeath[0..1] : Date

Person

When generalizing two or more object types, we move those features that are shared by them to the
newly added supertype where they are centralized. In the case of Employee and Author, this set
of shared features consists of the attributes name, dateOfBirth and dateOfDeath. In general,
shared features may include attributes, associations and constraints.

Notice that since in an information design model, each top-level class needs to have a standard identifier,
in the new class Person we have declared the standard identifier attribute personId, which is
inherited by all subclasses. Therefore, we have to reconsider the attributes that had been declared to
be standard identifiers in the subclasses before the generalization. In the case of Employee, we had
declared the attribute employeeNo as a standard identifier. Since the employee number is an important
business information item, we have to keep this attribute, even if it is no longer the standard identifier.
Because it is still an alternative identifier (a "key"), we define a uniqueness constraint for it with the
constraint keyword key.

Subtyping and Inheritance

3

In the case of Author, we had declared the attribute authorId as a standard identifier. Assuming that
this attribute represents a purely technical, rather than business, information item, we dropped it, since
it's no longer needed as an identifier for authors. Consequently, we end up with a model which allows
to identify employees either by their employee number or by their personId value, and to identify
authors by their personId value.

We consider the following extension of our original example model, shown in Figure 1.4, where we
have added two class hierarchies:

1. the disjoint (but incomplete) segmentation of Book into TextBook and Biography,

2. the overlapping and incomplete segmentation of Person into Author and Employee, which is
further specialized by Manager.

Figure 1.4. An information model with two class hierarchies

biography : Text

Authorisbn : String {id}
title : String
year : Integer

Book

* *
name : String {id}
address : String

Publisher

0..1 *

authored
Books

published
Books

employeeNo : Integer {key}
salary : Decimal

Employee

*
0..1

personId[1] : Integer {id}
name[1] : String
dateOfBirth[1] : Date
dateOfDeath[0..1] : Date

Person

subjectArea : String

TextBook

Manager

ceo

1

0..1

about : String

Biography

managed
Publisher

{disjoint}

3. Intension versus Extension
The intension of an object type is given by the set of its features, including attributes, associations,
constraints and operations.

The extension of an object type is the set of all objects instantiating the object type. The extension of
an object type is also called its population.

We have the following duality: while all features of a supertype are included in the intensions, or feature
sets, of its subtypes (intensional inclusion), all instances of a subtype are included in the extensions, or
instance sets, of its supertypes (extensional inclusion). This formal structure has been investigated in
formal concept analysis [http://en.wikipedia.org/wiki/Formal_concept_analysis].

Due to the intension/extension duality we can specialize a given type in two different ways:

1. By extending the type's intension through adding features in the new subtype (such as adding the
attribute subjectArea in the subtype TextBook).

2. By restricting the type's extension through adding a constraint (such as defining a subtype
MathTextBook as a TextBook where the attribute subjectArea has the specific value
"Mathematics").

http://en.wikipedia.org/wiki/Formal_concept_analysis
http://en.wikipedia.org/wiki/Formal_concept_analysis

Subtyping and Inheritance

4

Typical OO programming languages, such as Java and C#, only support the first possibility (specializing
a given type by extending its intension), while XML Schema and SQL99 also support the second
possibility (specializing a given type by restricting its extension).

4. Type Hierarchies
A type hierarchy (or class hierarchy) consists of two or more types, one of them being the root (or
top-level) type, and all others having at least one direct supertype. When all non-root types have a
unique direct supertype, the type hierarchy is a single-inheritance hierarchy, otherwise it's a multiple-
inheritance hierarchy. For instance, in Figure 1.5 below, the class Vehicle is the root of a single-
inheritance hierarchy, while Figure 1.6 shows an example of a multiple-inheritance hierarchy, due to the
fact that AmphibianVehicle has two direct superclasses: LandVehicle and WaterVehicle.

Figure 1.5. A class hierarchy having the root class Vehicle

Vehicle

LandVehicle WaterVehicle

Bike Car Sailboat

{disjoint} {disjoint}

SubmarineTruck

The simplest case of a class hierarchy, which has only one level of subtyping, is called a generalization
set in UML, but may be more naturally called segmentation. A segmentation is complete, if the union of
all subclass extensions is equal to the extension of the superclass (or, in other words, if all instances of the
superclass instantiate some subclass). A segmentation is disjoint, if all subclasses are pairwise disjoint
(or, in other words, if no instance of the superclass instantiates more than one subclass). Otherwise, it
is called overlapping. A complete and disjoint segmentation is a partition.

Figure 1.6. A multiple inheritance hierarchy

Vehicle

LandVehicle WaterVehicle

Bike Car AmphibianVehicle Sailboat

{disjoint} {disjoint}

In a class diagram, we can express these constraints by annotating the shared generalization arrow with
the keywords complete and disjoint enclosed in braces. For instance, the annotation of a segmentation
with {complete, disjoint} indicates that it is a partition. By default, whenever a segmentation does not
have any annotation, like the segmentation of Vehicle into LandVehicle and WaterVehicle
in Figure 1.6 above, it is {incomplete, overlapping}.

An information model may contain any number of class hierarchies.

Subtyping and Inheritance

5

5. The Class Hierarchy Merge Design
Pattern
Consider the simple class hierarchy of the design model in Figure 1.1 above, showing a disjoint
segmentation of the class Book. In such a case, whenever there is only one level (or there are only a
few levels) of subtyping and each subtype has only one (or a few) additional properties, it's an option to
re-factor the class hierarchy by merging all the additional properties of all subclasses into an expanded
version of the root class such that these subclasses can be dropped from the model, leading to a simplified
model.

This Class Hierarchy Merge design pattern comes in two forms. In its simplest form, the segmentations
of the original class hierarchy are disjoint, which allows to use a single-valued category attribute for
representing the specific category of each instance of the root class corresponding to the unique subclass
instantiated by it. When the segmentations of the original class hierarchy are not disjoint, that is, when at
least one of them is overlapping, we need to use a multi-valued category attribute for representing
the set of types instantiated by an object. We only discuss the simpler case of Class Hierarchy Merge
re-factoring for disjoint segmentations, where we take the following re-factoring steps:

1. Add an enumeration datatype that contains a corresponding enumeration literal for each segment
subclass. In our example, we add the enumeration datatype BookCategoryEL.

2. Add a category attribute to the root class with this enumeration as its range. The category
attribute is mandatory [1], if the segmentation is complete, and optional [0..1], otherwise. In
our example, we add a category attribute with range BookCategoryEL to the class Book.
The category attribute is optional because the segmentation of Book into TextBook and
Biography is incomplete.

3. Whenever the segmentation is rigid, we designate the category attribute as frozen, which means
that it can only be assigned once by setting its value when creating a new object, but it cannot be
changed later.

4. Move the properties of the segment subclasses to the root class, and make them optional. We call
these properties, which are typically listed below the category attribute, segment properties.
In our example, we move the attributes subjectArea from TextBook and about from
Biography to Book, making them optional, that is [0..1].

5. Add a constraint (in an invariant box attached to the expanded root class rectangle) enforcing that
the optional subclass properties have a value if and only if the instance of the root class instantiates
the corresponding category. In our example, this means that an instance of Book is of category
"TextBook" if and only if its attribute subjectArea has a value, and it is of category "Biography"
if and only if its attribute about has a value.

6. Drop the segment subclasses from the model.

In the case of our example, the result of this design re-factoring is shown in Figure 1.7 below.
Notice that the constraint (or "invariant") represents a logical sentence where the logical operator
keyword "IFF" stands for the logical equivalence operator "if and only if" and the property condition
prop=undefined tests if the property prop does not have a value.

Subtyping and Inheritance

6

Figure 1.7. The result of applying the Class Hierarchy Merge design pattern

isbn[1] : String {id}
title[1] : String
year[1] : Integer
category[0..1] : BookTypeEL {frozen}
subjectArea[0..1] : String
about[0..1] : String

Book

TextBook
Biography

«enumeration»
BookTypeEL

«invariant»
{(category="TextBook" IFF NOT subjectArea=undefined) AND
(category="Biography" IFF NOT about=undefined)}

6. Subtyping and Inheritance in
Computational Languages
Subtyping and inheritance have been supported in Object-Oriented Programming (OOP), in database
languages (such as SQL99), in the XML schema definition language XML Schema, and in other
computational languages, in various ways and to different degrees. At its core, subtyping in
computational languages is about defining type hierarchies and the inheritance of features: properties,
constraints and methods in OOP; table columns and constraints in SQL99; elements, attributes and
constraints in XML Schema.

In general, it is desirable to have support for multiple classification and multiple inheritance in type
hierarchies. Both language features are closely related and are considered to be advanced features, which
may not be needed in many applications or can be dealt with by using workarounds.

Multiple classification means that an object has more than one direct type. This is mainly the case
when an object plays multiple roles at the same time, and therefore directly instantiates multiple classes
defining these roles.

Multiple inheritance is typically also related to role classes. For instance, a student assistant is a person
playing both the role of a student and the role of an academic staff member, so a corresponding OOP class
StudentAssistant inherits from both role classes Student and AcademicStaffMember. In
a similar way, in our example model above, an AmphibianVehicle inherits from both role classes
LandVehicle and WaterVehicle.

6.1. Subtyping and inheritance in OOP
The minimum level of support for subtyping in OOP, as provided, for instance, by Java and C#, allows
defining inheritance of properties and methods in single-inheritance hierarchies, which can be inspected
with the help of an is-instance-of predicate that allows testing if a class is the direct or an indirect type
of an object. In addition, it is desirable to be able to inspect inheritance hierarchies with the help of

1. a predefined instance-level property for retrieving the direct type of an object (or its direct types,
if multiple classification is allowed);

2. a predefined type-level property for retrieving the direct supertype of a type (or its direct supertypes,
if multiple inheritance is allowed).

Subtyping and Inheritance

7

A special case of an OOP language is JavaScript, which did originally not have an explicit
language element for defining classes, but only for defining constructor functions. Due to its dynamic
programming features, JavaScript allows using various code patterns for implementing classes,
subtyping and inheritance. In modern JavaScript, starting from ES2015, defining a superclass and a
subclass is straightforward. First, we define a base class, Person, with two properties, firstName
and lastName:

class Person {
 constructor (first, last) {
 // assign base class properties
 this.firstName = first;
 this.lastName = last;
 }
}

Then, we define a subclass, Student, with one additional property, studentNo:

class Student extends Person {
 constructor (first, last, studNo) {
 // invoke constructor of superclass
 super(first, last);
 // assign additional properties
 this.studentNo = studNo;
 }
}

Notice how the constructor of the superclass is invoked with super(first, last) for assigning
the superclass properties.

6.2. Subtyping and inheritance with XML Schema
In XML Schema, a subtype can be defined by extending or by restricting an existing complex type. While
extending a complex type means extending its intension by adding elements or attributes, restricting a
complex type means restricting its extension by adding constraints.

We can define a complex type Person and a subtype Student by extending Person in the following
way:

<xs:complexType name="Person">
 <xs:attribute name="firstName" type="xs:string" />
 <xs:attribute name="lastName" type="xs:string" />
 <xs:attribute name="gender" type="GenderValue" />
</xs:complexType>

<xs:complexType name="Student">
 <xs:extension base="Person">
 <xs:attribute name="studentNo" type="xs:string" />
 </xs:extension>
</xs:complexType>

We can define a subtype FemalePerson by restricting Person in the following way:

<xs:complexType name="FemalePerson">

Subtyping and Inheritance

8

 <xs:restriction base="Person">
 <xs:attribute name="firstName" type="xs:string" />
 <xs:attribute name="lastName" type="xs:string" />
 <xs:attribute name="gender" type="GenderValue"
 use="fixed" value="f" />
 </xs:restriction>
</xs:complexType>

Notice that by fixing the value of the gender attribute to "f", we define a constraint that is only satisfied
by the female instances of Person.

6.3. Subtyping and inheritance with OWL
In the Web Ontology Language OWL, property definitions are separated from class definitions and
properties are not single-valued, but multi-valued by default. Consequently, standard properties need
to be declared as functional. Thus, we obtain the following code for expressing that Person is a class
having the property name:

<owl:Class rdf:ID="Person"/>
<owl:DatatypeProperty rdf:ID="name">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="xsd:string"/>
 <rdf:type rdf:resource="owl:FunctionalProperty"/>
</owl:DatatypeProperty>

OWL allows stating that a class is a subclass of another class in the following way:

<owl:Class rdf:ID="Student">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="studentNo">
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="xsd:string"/>
 <rdf:type rdf:resource="owl:FunctionalProperty"/>
</owl:DatatypeProperty>

For better usability, OWL should allow to define the properties of a class within a class definition, using
the case of functional properties as the default case.

6.4. Representing class hierarchies with SQL
database tables
A standard DBMS stores information (objects) in the rows of tables, which have been conceived as set-
theoretic relations in classical relational database systems. The relational database language SQL is used
for defining, populating, updating and querying such databases. But there are also simpler data storage
techniques that allow to store data in the form of table rows, but do not support SQL. In particular,
key-value storage systems, such as JavaScript's Local Storage API, allow storing a serialization of a JS
entity table (a map of entity records) as the string value associated with the table name as a key.

While in the classical version of SQL (SQL92) there is no support for subtyping and inheritance, this has
been changed in SQL99. However, the subtyping-related language elements of SQL99 have only been
implemented in some DBMS, for instance in the open source DBMS PostgreSQL. As a consequence, for
making a design model that can be implemented with various frameworks using various SQL DBMSs

Subtyping and Inheritance

9

(including weaker technologies such as MySQL and SQLite), we cannot use the SQL99 features for
subtyping, but have to model inheritance hierarchies in database design models by means of plain
tables and foreign key dependencies. This mapping from class hierarchies to relational tables (and
back) is the business of Object-Relational-Mapping frameworks such as JPA [http://en.wikibooks.org/
wiki/Java_Persistence/What_is_JPA%3F] Providers (like Hibernate [http://en.wikipedia.org/wiki/
Hibernate_%28Java%29]), Microsoft's Entity Framework [https://docs.microsoft.com/en-us/ef/], or the
Active Record [http://guides.rubyonrails.org/association_basics.html] approach of the Rails [http://
rubyonrails.org/] framework.

There are essentially three alternative approaches how to represent a class hierarchy with database tables:

1. Single Table Inheritance [http://www.martinfowler.com/eaaCatalog/
singleTableInheritance.html] (STI) is the simplest approach, where the entire class hierarchy is
represented by a single table, containing columns for all attributes of the root class and of all its
subclasses, and named after the name of the root class.

2. Table per Class Inheritance [https://en.wikibooks.org/wiki/Java_Persistence/
Inheritance#Table_Per_Class_Inheritance] (TCI) is an approach, where each class of the hierarchy
is represented by a corresponding table containing also columns for inherited properties, thus
repeating the columns of the tables that represent its superclasses.

3. Joined Tables Inheritance [http://en.wikibooks.org/wiki/Java_Persistence/
Inheritance#Joined.2C_Multiple_Table_Inheritance] (JTI) is a more logical approach, where
each segment subclass is represented by a corresponding table (subtable) connected to the table
representing its superclass (supertable) via its primary key referencing the primary key of the
supertable, such that the (inherited) properties of the superclass are not represented as columns in
subtables.

Notice that the STI approach is closely related to the Class Hierarchy Merge design pattern discussed
in Section 5 above. Whenever this design pattern has already been applied in the design model, or
the design model has already been re-factored according to this design pattern, the class hierarchies
concerned (their subclasses) have been eliminated in the design, and consequently also in the data model
to be coded in the form of class definitions in the app's model layer, so there is no need anymore to
map class hierarchies to single tables. Otherwise, the design model contains a class hierarchy that is
implemented with a corresponding class hierarchy in the app's model layer, which would be mapped to
database tables with the help of the STI approach.

We illustrate the use of these approaches with the help of two simple examples. The first example is the
Book class hierarchy, which is shown in Figure 1.1 above. The second example is the class hierarchy
of the Person roles Employee, Manager and Author, shown in the class diagram in Figure 1.8
below.

Figure 1.8. An information design model with a Person roles hierarchy

empNo : Integer {key}

Employee

personId : Integer {id}
name : String

Person

biography : String

Author

department : String

Manager

http://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F
http://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F
http://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F
http://en.wikipedia.org/wiki/Hibernate_%28Java%29
http://en.wikipedia.org/wiki/Hibernate_%28Java%29
http://en.wikipedia.org/wiki/Hibernate_%28Java%29
https://docs.microsoft.com/en-us/ef/
https://docs.microsoft.com/en-us/ef/
http://guides.rubyonrails.org/association_basics.html
http://guides.rubyonrails.org/association_basics.html
http://rubyonrails.org/
http://rubyonrails.org/
http://rubyonrails.org/
http://www.martinfowler.com/eaaCatalog/singleTableInheritance.html
http://www.martinfowler.com/eaaCatalog/singleTableInheritance.html
http://www.martinfowler.com/eaaCatalog/singleTableInheritance.html
https://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Table_Per_Class_Inheritance
https://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Table_Per_Class_Inheritance
https://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Table_Per_Class_Inheritance
http://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Joined.2C_Multiple_Table_Inheritance
http://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Joined.2C_Multiple_Table_Inheritance
http://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Joined.2C_Multiple_Table_Inheritance

Subtyping and Inheritance

10

6.4.1. Single Table Inheritance
Consider the single-level class hierarchy shown in Figure 1.1 above, which is an incomplete disjoint
segmentation of the class Book, as the design for the model classes of an MVC app. In such a case,
whenever we have a model class hierarchy with only one level (or only a few levels) of subtyping and
each subtype has only a few additional properties, it's preferable to use STI, so we model a single table
containing columns for all attributes such that the columns representing additional attributes of segment
subclasses ("segment attributes") are optional, as shown in the SQL table model in Figure 1.9 below.

Figure 1.9. An SQL table model with a single table representing the Book class
hierarchy

isbn[1] : VARCHAR {pkey}
title[1] : VARCHAR
year[1] : INTEGER
category[0..1] : VARCHAR ["TextBook","Biography"] {frozen}
subject_area[0..1] : VARCHAR
about[0..1] : VARCHAR

«SQL table»
books

«invariant»
{(category="TextBook" IFF subject_area IS NOT NULL) AND
(category="Biography" IFF about IS NOT NULL)}

It is a common approach to add a special discriminator column for representing the category of each row
corresponding to the subclass instantiated by the represented object. Such a column would normally be
string-valued, but constrained to one of the names of the subclasses. If the DBMS supports enumerations,
it could also be enumeration-valued. We use the name category for the discriminator column, which,
in the case of our Book class hierarchy example, has a frozen value constraint since the textbook-
biography segmentation is rigid.

Based on the category of a book, we have to enforce that if and only if it is "TextBook", its attribute
subjectArea has a value, and if and only if it is "Biography", its attribute about has a value. This
implied constraint is expressed in the invariant box attached to the Book table class in the class diagram
above, where the logical operator keyword "IFF" represents the logical equivalence operator "if and
only if". It needs to be implemented in the database, e.g., with an SQL table CHECK clause or with
SQL triggers.

When the given segmentation is disjoint, a single-valued enumeration attribute category is used for
representing the information to which subclass an instance belongs. Otherwise, if it is non-disjoint, a
multi-valued enumeration attribute categories is used for representing the information to which
subclasses an instance belongs. Such an attribute can be implemented in SQL by defining a string-valued
column for representing a set of enumeration codes or labels as corresponding string concatenations.

Consider the class hierarchy shown in Figure 1.8 above. With only three additional attributes defined in
the subclasses Employee, Manager and Author, this class hierarchy can again be mapped with the
STI approach, as shown in the SQL table model Figure 1.10 below.

Subtyping and Inheritance

11

Figure 1.10. An STI table model representing the Person roles hierarchy

person_id[1] : INTEGER {pkey}
name[1] : VARCHAR
categories[*] : VARCHAR ["Employee","Manager","Author"]
emp_no[0..1] : INTEGER {unique}
biography[0..1] : VARCHAR
department[0..1] : VARCHAR

«SQL table»
people

«invariant»
{("Employee" IN categories IFF notNULL(emp_no))
AND ("Manager" IN categories IFF notNULL(emp_no)
 AND notNULL(department))
AND ("Author" IN categories IFF notNULL(biography))}

Notice that now the discriminator column categories is multi-valued, since the segmentation of
Person is not disjoint, but overlapping, implying that a Person object may belong to several
categories. Notice also that, since a role segmentation (like Employee, Manager, Author) is not rigid,
the discriminator column categories does not have a frozen value constraint.

An example of an admissible population for this model is the following:

people
person_id name categories biography emp_no department
1001 Harry Wagner Author,

Employee
Born in Boston,
MA, in 1956, ...

21035

1002 Peter Boss Manager 23107 Sales
1003 Tom Daniels
1077 Immanuel Kant Author Immanuel Kant

(1724-1804)
was a German
philosopher ...

Notice that the Person table contains four different types of people:

1. A person, Harry Wagner, who is both an author (with a biography) and an employee (with an
employee number).

2. A person, Peter Boss, who is a manager (a special type of employee), managing the Sales department.

3. A person, Tom Daniels, who is neither an author nor an employee.

4. A person, Immanuel Kant, who is an author (with a biography).

Pros of the STI approach: It leads to a faithful representation of the subtype relationships expressed
in the original class hierarchy; in particular, any row representing a subclass instance (an employee,
manager or author) also represents a superclass instance (a person).

Cons: (1) In the case of a multi-level class hierarchy where the subclasses have little in common, the
STI approach does not lead to a good representation. (2) The structure of the given class hierarchy in
terms of its elements (classes) is only implicitly preserved.

Subtyping and Inheritance

12

6.4.2. Table per Class Inheritance
In a more realistic model, the subclasses of Person shown in Figure 1.8 above would have many more
attributes, so the STI approach would be no longer feasible. In the TCI approach we get the SQL table
model shown in Figure 1.11 below. A TCI model represents each concrete class of the class hierarchy as
a table, such that each segment subclass is represented by a table that also contains columns for inherited
properties, thus repeating the columns of the table that represents the superclass.

Figure 1.11. A TCI table model representing the Person roles hierarchy

person_id : INTEGER {pkey}
name : VARCHAR
emp_no : INTEGER {unique}

«SQL table»
employees

person_id : INTEGER {pkey}
name : VARCHAR

«SQL table»
people

person_id : INTEGER {pkey}
name : VARCHAR
biography : VARCHAR

«SQL table»
authors

person_id : INTEGER {pkey}
name : VARCHAR
emp_no : INTEGER {unique}
department : VARCHAR

«SQL table»
managers

A TCI table model can be derived from the information design model by performing the following steps:

1. Replacing the standard ID property modifier {id} in all classes with {pkey} for indicating that the
standard ID property is a primary key.

2. Replacing the singular (capitalized) class names (Person, Author, etc.) with pluralized lowercase
table names (people, authors, etc.), and replacing camel case property names (personId and empNo)
with lowercase underscore-separated names for columns (person_id and emp_no).

3. Adding a «table» stereotype to all class rectangles.

4. Replacing the platform-independent datatype names with SQL datatype names.

5. Dropping all generalization/inheritance arrows and adding all columns of supertables (such as
person_id and name from people) to their subtables (authors and employees).

Each table would only be populated with rows corresponding to the direct instances of the represented
class. An example of an admissible population for this model is the following:

people
personId name
1003 Tom Daniels

authors
person_id name biography
1001 Harry Wagner Born in Boston, MA, in 1956, ...
1077 Immanuel Kant Immanuel Kant (1724-1804) was

a German philosopher ...

employees
person_id name emp_no
1001 Harry Wagner 21035

Subtyping and Inheritance

13

managers
person_id name emp_no department
1002 Peter Boss 23107 Sales

Pros of the TCI approach: (1) The structure of the given class hierarchy in terms of its elements (classes)
is explicitly preserved. (2) When the segmentations of the given class hierarchy are disjoint, TCI leads
to memory-efficient non-redundant storage.

Cons: (1) The TCI approach does not yield a faithful representation of the subtype relationships
expressed in the original class hierarchy. In particular, for any row representing a subclass instance (an
employee, manager or author) there is no information that it represents a superclass instance (a person).
Thus, the TCI database schema does not inform about the represented subtype relationships; rather,
this meta-information, which is kept in the app's class model, is de-coupled from the database. (2) The
TCI approach requires repeating column definitions, which is a form of schema redundancy. (3) The
TCI approach may imply data redundancy whenever the segment subclasses overlap. In our example,
authors can also be employees, so for any person in the overlap, we would need to duplicate the data
storage for all columns representing properties of the superclass (in our example, this only concerns the
property name).

6.4.3. Joined Tables Inheritance
For avoiding the data redundancy problem of TCI in the case of overlapping segmentations, we could
take the JTI approach as exemplified in the SQL table model shown in Figure 1.12 below. This
model connects tables representing subclasses (subtables) to tables representing their superclasses
(supertables) by defining their primary key column(s) to be at the same time a foreign key referencing
their supertable's primary key. Notice that foreign keys are visualized in the form of UML dependency
arrows stereotyped with «fkey» and annotated at their source table side with the name of the foreign
key column.

Figure 1.12. A JTI table model representing the Person roles hierarchy

person_id : INTEGER {pkey}
emp_no : INTEGER {unique}

«SQL table»
employees

person_id : INTEGER {pkey}
name : VARCHAR

«SQL table»
people

person_id : INTEGER {pkey}
biography : VARCHAR

«SQL table»
authors

person_id : INTEGER {pkey}
department : VARCHAR

«SQL table»
managers

«fkey»

person_id

«fkey»

person_id

person_id

<<fkey>>

An example of an admissible population for this model is the following:

people
person_id name
1001 Harry Wagner
1002 Peter Boss

Subtyping and Inheritance

14

people
person_id name
1003 Tom Daniels
1077 Immanuel Kant

authors
person_id biography
1001 Born in Boston, MA, in 1956, ...
1077 Immanuel Kant (1724-1804) was a German

philosopher ...

employees
person_id emp_no
1001 21035
1002 23107

managers
person_id department
1002 Sales

Pros of the JTI approach: (1) Subtyping relationships and the structure of class hierarchies are explicitly
preserved. (2) Data redundancy in the case of overlapping segmentations is avoided.

Cons: (1) The main disadvantage of the JTI approach is that for querying a subclass, join queries (for
joining the segregated entity data) are required, which may create performance issues.

7. Quiz Questions
7.1. Question 1: Statements about a Class
Hierarchy
Consider the following class model:

a1 : String {id}
a2 : Integer
a3 : Integer

Abc

b1 : Integer {id}

Bcd

*

ab

0..1

c : Integer {key}

Cde «invariant»
{a3 > a2}

Which of the following statements are true? Select one or more:

1. ☐ All instances of Cde have a value for attribute a1.

2. ☐ The standard identifier of Cde is a1.

Subtyping and Inheritance

15

3. ☐ All instances of Cde may have an object reference ab referencing an object of type Bcd.

4. ☐ Direct instances of Abc may have a value for c.

5. ☐ For any object of type Abc the value of a3 must be greater than the value of a2.

6. ☐ For any object of type Cde the value of a3 must be greater than the value of a2.

7. ☐ The standard identifier of Cde is c.

7.2. Question 2: Class Hierarchy Merge
Consider the following class model:

a1 : Integer {id}

Abc

a3[0..1] : String

Cde

a2 : String

Bcd

{disjoint, complete}

In the case of such a simple class hierarchy, we can use the Class Hierarchy Merge design pattern where
the entire class hierarchy is merged into a single class. Which of the following models describes the
correct implementation of the Class Hierarchy Merge design pattern for the given Abc class hierarchy?
Select one:

1. O

a1[1] : Integer {id}
category[1] : AbcTypeEL
a2[1] : String
a3[0..1] : String

Abc

Bcd
Cde

«enumeration»
AbcTypeEL

2. O

a1[1] : Integer {id}
category[0..1] : AbcTypeEL
a2[1] : String
a3[0..1] : String

Abc

Bcd
Cde

«enumeration»
AbcTypeEL

3. O

a1[1] : Integer {id}
category[1] : AbcTypeEL
a2[0..1] : String
a3[0..1] : String

Abc

Bcd
Cde

«enumeration»
AbcTypeEL

4. O

a1[1] : Integer {id}
a2[1] : String
a3[0..1] : String

Abc

Subtyping and Inheritance

16

7.3. Question 3: Multiple Inheritance
Which of the following class models include cases of multiple inheritance? Select one or more:

1. ☐

2. ☐

3. ☐

4. ☐

7.4. Question 4: Two ways of subtyping
How can a given object type be specialized to a subtype? Select one or more:

1. ☐ By extending the object type's intension through adding attributes or associations in the subtype.

2. ☐ By extending the object type's extension through dropping a constraint.

3. ☐ By restricting the object type's extension through adding a constraint.

4. ☐ By restricting the object type's intension through dropping attributes or associations in the subtype..

7.5. Question 5: Vehicle Class Hierarchy
Consider the following class model. There are 7 object classes: Vehicle, Car, Bike, Trailer, Truck,
Motorcar and Van. Car, Bike and Trailer are disjoint subclasses of Vehicle; Truck and Motorcar are
disjoint subclasses of Car. Van is a subclass of Motorcar. In addition, there is the association Vehicle
has Person as owner, for which the following statements hold:

Subtyping and Inheritance

17

• Each Vehicle has exactly one Person as owner.

• It is possible that some Person is not owner of any Vehicle.

• It is possible that the same Person is owner of more than one Vehicle.

Which of the following sentences are correct on the basis of this extended model? Select one or more:

1. ☐ It is possible that some Bike has more than one Person as owner.

2. ☐ Each Van has at most one Person as owner.

3. ☐ Each Person is owner of at most one Car.

4. ☐ Each Person is owner of at least one Truck.

18

Chapter 2. Subtyping with Plain JS
Whenever an app has to manage the data of a larger number of object types, there may be various
subtype (inheritance) relationships between some of the object types. Handling subtype relationships is
an advanced issue in software application engineering, which is often not well supported by application
development frameworks.

In this chapter, we first explain the general approach to constructor-based subtyping in JavaScript before
presenting two case studies based on fragments of the information model of our running example, the
Public Library app, shown above.

In the first case study, we consider the single-level class hierarchy with root Book shown in Figure 1.1,
which is an incomplete disjoint rigid segmentation. We use the Class Hierarchy Merge design pattern for
re-factoring this simple class hierarchy to a single class that can be mapped to a persistent database table.

In the second case study, we consider the multi-level class hierarchy consisting of the Person
roles Employee, Manager and Author, shown in Figure 1.8. The segmentation of Person into
Employee and Author does not have any constraints, which means that it is incomplete, overlapping
(non-disjoint) and non-rigid.

We use the Class Hierarchy Merge design pattern for re-factoring the simple Manager-is-Employee
sub-hierarchy, and the Joined Tables Inheritance approach for mapping the Employee-and-Author-
is-a-Person class hierarchy to a set of three database tables that are related with each other via foreign
key dependencies.

In both case studies we show

1. how to derive a JS class model, and a corresponding entity table model, from the information design
model,

2. how to code the JS class model in the form of JS model classes,

3. how to write the view and controller code based on the model code.

1. Subtyping with ES6 Classes
Before the version ES6 (or ES2015), JavaScript did not have an explicit class concept and subtyping
was not directly supported, so it had to be implemented with the help of certain code patterns providing
two inheritance mechanisms: (1) inheritance of properties and (2) inheritance of methods.

As we have explained in Part 1 of this tutorial [http://web-engineering.info/tech/JsFrontendApp/
minimal-tutorial.html], classes can be defined in two alternative ways: constructor-based and factory-
based. Both approaches have their own way of implementing inheritance. In this tutorial, we only
discuss subtyping and inheritance for (constructor-based) ES6 classes.

We summarize the ES6 code pattern for defining a superclass and a subclass in a constructor-based
single-inheritance class hierarchy with the help of the following example:

http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html
http://web-engineering.info/tech/JsFrontendApp/minimal-tutorial.html

Subtyping with Plain JS

19

firstName : String
lastName : String

Person

studNo : Integer

Student

First, we define a base class, Person, with two properties, firstName and lastName, defined with
getters and setters:

class Person {
 constructor ({first, last}) {
 // assign properties by invoking their setters
 this.firstName = first;
 this.lastName = last;
 }
 get firstName() {return this._firstName;}
 set firstName(f) {
 ... // check constraints
 this._firstName = f;
 }
 get lastName() {return this._lastName;}
 set lastName(l) {
 ... // check constraints
 this._lastName = l;
 }
}

Then, we define a subclass, Student, with one additional property, studNo, using the ES6 keywords
extends and super:

class Student extends Person {
 constructor ({first, last, studNo}) {
 // invoke constructor of superclass
 super({first, last});
 // assign additional properties
 this.studNo = studNo;
 }
 get studNo() {return this._studNo;}
 set studNo(sn) {
 ... // check constraints
 this._studNo = sn;
 }
}

Notice how the constructor of the superclass Person is invoked: with super({first, last}).

Subtyping with Plain JS

20

2. Case Study 1: Eliminating a Class
Hierarchy
Simple class hierarchies can be eliminated by applying the Class Hierarchy Merge design pattern. The
starting point for our case study is the simple class hierarchy shown in the information design model of
Figure 1.1 above, representing a disjoint (but incomplete) rigid segmentation of Book into TextBook
and Biography. This model is first simplified by applying the Class Hierarchy Merge design pattern,
resulting in the following model:

isbn[1] : String {id}
title[1] : String
year[1] : Integer
category[0..1] : BookTypeEL {frozen}
subjectArea[0..1] : String
about[0..1] : String

Book

TextBook
Biography

«enumeration»
BookTypeEL

«invariant»
{(category="TextBook" IFF NOT subjectArea=undefined) AND
(category="Biography" IFF NOT about=undefined)}

We can now derive a JS class model from this design model.

2.1. Make the JS class model
We make the JS class model in 3 steps:

1. Replace the platform-independent datatypes (used as the ranges of attributes and parameters) with
JS datatypes. This includes the case of enumeration-valued attributes, such as category, which
are turned into number-valued attributes restricted to the enumeration integers of the underlying
enumeration type.

2. Decorate all properties with a «get/set» stereotype for indicating that they have implicit getters and
setters.

3. Add property check functions, as described in Part 2 of this tutorial. The checkCategory function,
as well as the checks of the segment properties need special consideration according to their implied
semantics. In particular, a segment property's check function must ensure that the property can only
be assigned if the category attribute has a value representing the corresponding segment. We
explain this implied validation semantics in more detail below when we discuss how the JS class
model is coded.

This leads to the JS class model shown in Figure 2.1, where the class-level ('static') methods are
underlined:

Subtyping with Plain JS

21

Figure 2.1. The JS class model of the merged Book class hierarchy

checkIsbn(in isbn : string) : ConstraintViolation
checkIsbnAsId(in isbn : string) : ConstraintViolation
checkTitle(in title : string) : ConstraintViolation
checkYear(in year : number) : ConstraintViolation
checkCategory(in type : number) : ConstraintViolation
checkSubjectArea(in subjectArea : string) : ConstraintViolation
checkAbout(in about : string) : ConstraintViolation

«get/set» isbn[1] : string {id}
«get/set» title[1] : string
«get/set» year[1] : number
«get/set» category[0..1] : number {from BookCategoryEL, frozen}
«get/set» subjectArea[0..1] : string
«get/set» about[0..1] : string

Book

TEXTBOOK
BIOGRAPHY

«enumeration»
BookCategoryEL

2.2. New issues
Compared to the enumeration app [http://web-engineering.info/tech/JsFrontendApp/3-
EnumerationApp/index.html] discussed in Part 3 of this tutorial, we have to deal with a number of new
issues:

1. In the model code we have to take care of

a. Adding the constraint violation class FrozenValueConstraintViolation to errorTypes.js.

b. Coding the enumeration type (BookCategoryEL in our example) to be used as the range of
the category attribute .

c. Coding the checkCategory function for the category attribute. In our example this attribute
is optional, due to the fact that the Book segmentation is incomplete. If the segmentation, to
which the Class Hierarchy Merge pattern is applied, is complete, then the category attribute
is mandatory.

d. Coding the check functions for all segment properties such that they take the category as a second
parameter for being able to test if the segment property concerned applies to a given instance.

e. Refining the serialization function toString() by adding a category case distinction
(switch) statement for serializing only the segment properties that apply to the given category.

f. Implementing the Frozen Value Constraint for the category attribute in Book.update by
updating the category of a book only if it has not yet been defined. This means it cannot be
updated anymore as soon as it has been defined.

2. In the UI code we have to take care of

a. Adding a "Category" column to the display table of the "Retrieve/list all books" use case in
books.html. A book without a special category will have an empty table cell, while for all
other books their category will be shown in this cell, along with other segment-specific attribute
values. This requires a corresponding switch statement in the books.js view code file.

b. Adding a "Category" choice widget (typically, a selection list), and corresponding form fields
for all segment properties, in the forms of the "Create book" and "Update book" use cases in
books.html. Segment property form fields are only displayed when a corresponding book

http://web-engineering.info/tech/JsFrontendApp/3-EnumerationApp/index.html
http://web-engineering.info/tech/JsFrontendApp/3-EnumerationApp/index.html
http://web-engineering.info/tech/JsFrontendApp/3-EnumerationApp/index.html

Subtyping with Plain JS

22

category has been selected. Such an approach of rendering specific form fields only on certain
conditions is sometimes called dynamic forms.

c. Disabling the "Category" selection field in the "Update book" use case, after selecting a book to
be updated, if the selected book has a category value (in order to prevent any changes of the
category attribute's value).

2.3. Code the model classes of the JS class
model
The JS class model can be directly coded for getting the code of the model classes of our JS front-end app.

2.3.1. Summary
1. Code the enumeration type BookCategoryEL to be used as the range of the category attribute

with the help of the meta-class Enumeration, as explained in Part 3 of this tutorial .

2. Code the model class Book in the form of a ES6 class definition with get and set methods as
well as static check functions.

These steps are discussed in more detail in the following sections.

2.3.2. Code the enumeration type BookCategoryEL
The enumeration type BookCategoryEL is coded with the help of our library meta-class
Enumeration at the beginning of the Book.js model class file in the following way:

BookCategoryEL = new Enumeration(["Textbook", "Biography"]);

2.3.3. Code the model class Book
We code the model class Book in the form of an ES6 class definition where the category attribute as
well as the segment attributes subjectArea and about are optional, with getters, setters and static
check functions for all properties:

class Book {
 constructor ({isbn, title, year, category, subjectArea, about}) {
 this.isbn = isbn;
 this.title = title;
 this.year = year;
 // optional properties
 if (category) this.category = category;
 if (subjectArea) this.subjectArea = subjectArea;
 if (about) this.about = about;
 }
 get isbn() {...}
 static checkIsbn(isbn) {...}
 static checkIsbnAsId(isbn) {...}
 set isbn(isbn) {...}
 get title() {...}
 static checkTitle(t) {...}
 set title(t) {...}
 get year() {...}

Subtyping with Plain JS

23

 static checkYear(y) {...}
 set year(y) {...}
 get category() {...}
 static checkCategory(c) {...}
 set category(c) {...}
 get subjectArea() {...}
 static checkSubjectArea(sA, cat) {...}
 set subjectArea(s) {...}
 get about() {...}
 static checkAbout(a, cat) {...}
 set about(a) {...}
}

Notice that the constructor function is defined with a single record parameter using the ES6 syntax
for function parameter destructuring [https://www.jstips.co/en/javascript/use-destructuring-in-function-
parameters/].

We code the checkCategory and setCategory methods for the category attribute in the
following way:

static checkCategory(c) {
 if (c === undefined || c === "") {
 return new NoConstraintViolation(); // category is optional
 } else if (!isIntegerOrIntegerString(c) || parseInt(c) < 1 ||
 parseInt(c) > BookCategoryEL.MAX) {
 return new RangeConstraintViolation(
 "Invalid value for category: "+ c);
 } else {
 return new NoConstraintViolation();
 }
};

set category(c) {
 var validationResult = null;
 if (this.category) { // already set/assigned
 validationResult = new FrozenValueConstraintViolation(
 "The category cannot be changed!");
 } else {
 validationResult = Book.checkCategory(c);
 }
 if (validationResult instanceof NoConstraintViolation) {
 this._category = parseInt(c);
 } else {
 throw validationResult;
 }
}

While the getters for segment properties (in this example: subjectArea and about) follow the
standard pattern, their checks and setters have to make sure that the property applies to the category
of the instance being checked. This is achieved by checking a combination of a property value and a
category, as in the following example:

static checkSubjectArea(sA, c) {
 if (c === BookCategoryEL.TEXTBOOK && !sA) {

https://www.jstips.co/en/javascript/use-destructuring-in-function-parameters/
https://www.jstips.co/en/javascript/use-destructuring-in-function-parameters/
https://www.jstips.co/en/javascript/use-destructuring-in-function-parameters/

Subtyping with Plain JS

24

 return new MandatoryValueConstraintViolation(
 "A subject area must be provided for a textbook!");
 } else if (c !== BookCategoryEL.TEXTBOOK && sA) {
 return new ConstraintViolation("A subject area must not " +
 "be provided if the book is not a textbook!");
 } else if (sA && (typeof(sA) !== "string" || sA.trim() === "")) {
 return new RangeConstraintViolation(
 "The subject area must be a non-empty string!");
 } else {
 return new NoConstraintViolation();
 }
}

In the serialization function toString, we serialize the category attribute and the segment properties
in a switch statement:

toString() {
 var bookStr = `Book{ ISBN: ${this.isbn}, title: ${this.title}, year: ${this.year}`;
 switch (this.category) {
 case BookCategoryEL.TEXTBOOK:
 bookStr += `, textbook subject area: ${this.subjectArea}`;
 break;
 case BookCategoryEL.BIOGRAPHY:
 bookStr += `, biography about: ${this.about}`;
 break;
 }
 return bookStr + "}";
};

In the update method of a model class, we only set a property if it is to be updated, that is, if there is
a corresponding argument slot with a value that is different from the old property value. In the special
case of a category attribute with a Frozen Value Constraint, we need to make sure that it can only be
updated, along with an accompanying set of segment properties, if it has not yet been assigned. Thus, in
the Book.update method, we perform the special test if book.category === undefined for
handling the special case of an initial assignment, while we handle updates of the segment properties
subjectArea and about in a more standard way:

Book.update = function ({isbn, title, year,
 category, subjectArea, about}) {
 const book = Book.instances[isbn],
 objectBeforeUpdate = cloneObject(book);
 var noConstraintViolated=true, updatedProperties=[];
 try {
 ...
 if (category) {
 if (book.category === undefined) {
 book.category = category;
 updatedProperties.push("category");
 } else if (category !== book.category) {
 throw new FrozenValueConstraintViolation(
 "The book category must not be changed!");
 }
 } else if (category === "" && "category" in book) {
 throw new FrozenValueConstraintViolation(

Subtyping with Plain JS

25

 "The book category must not be unset!");
 }
 if (subjectArea && book.subjectArea !== subjectArea) {
 book.subjectArea = subjectArea;
 updatedProperties.push("subjectArea");
 }
 if (about && book.about !== about) {
 book.about = about;
 updatedProperties.push("about");
 }
 } catch (e) {
 ...
 }
 ...
};

2.4. Write the User Interface Code
The app's user interface (UI) consists of a start page that allows navigating to data management pages
(in our example, to books.html). Such a data management page contains 5 sections: manage books,
list and retrieve all books, create book, update book and delete book, such that only one of them is
displayed at any time (by setting the CSS property display:none for all others).

2.4.1. Summary
We have to take care of handling the category attribute and the segment properties subjectArea
and about both in the "Retrieve and list all books" use case as well as in the "Create book" and "Update
book" use cases by

1. Adding a segment information column (with heading "Category") to the display table of the "Retrieve
and list all books" use case in books.html.

2. Adding a "Category" selection field, and input fields for all segment properties, in the user interfaces
of the "Create book" and "Update book" use cases in books.html. The form fields for segment
properties are only displayed, when a corresponding book category has been selected.

2.4.2. Add a segment information column in Retrieve/List
All
We add a "Category" column to the view table of the "Retrieve/list all books" use case in books.html:

<table id="books">
 <thead><tr>
 <th>ISBN</th><th>Title</th><th>Year</th><th>Category</th>
 </tr></thead>
 <tbody></tbody>
</table>

A book without a special category will have an empty table cell in this column, while for all other
books their category will be shown in this column, along with other category-specific information. This
requires a corresponding switch statement in the v/books.js file:

if (book.category) {
 switch (book.category) {

Subtyping with Plain JS

26

 case BookCategoryEL.TEXTBOOK:
 row.insertCell().textContent = book.subjectArea + " textbook";
 break;
 case BookCategoryEL.BIOGRAPHY:
 row.insertCell().textContent = "Biography about "+ book.about;
 break;
 }
}

2.4.3. Add a category selection field in Create and Update
In both use cases, we need to allow selecting a special category of book ('textbook' or 'biography') with
the help of a selection field, as shown in the following HTML fragment:

<div class="field">
 <label>Category: <select name="category"></select></label>
</div>
<div class="field Textbook"><!-- conditional field -->
 <label>Subject area: <input type="text" name="subjectArea" /></label>
</div>
<div class="field Biography"><!-- conditional field -->
 <label>About: <input type="text" name="about" /></label>
</div>

Notice that we have added "Textbook" and "Biography" as additional values of the class attribute of
the segment field container elements. This supports the rendering and un-rendering of "Textbook" and
"Biography" form fields, depending on the value of the category attribute.

In the handleCategorySelectChangeEvent handler, segment property form fields are only
displayed, with displaySegmentFields, when a corresponding book category has been selected:

handleCategorySelectChangeEvent = function (e) {
 const formEl = e.currentTarget.form,
 // the array index of BookCategoryEL.labels
 categoryIndexStr = formEl.category.value;
 if (categoryIndexStr) {
 displaySegmentFields(formEl, BookCategoryEL.labels,
 parseInt(categoryIndexStr) + 1);
 } else {
 undisplayAllSegmentFields(formEl, BookCategoryEL.labels);
 }
};

Recall that the category selection list contains a no-selection option "---" with the empty string as its
return value, and a list of options formed by the enumeration labels of BookCategoryEL.labels
such that their value is the corresponding array index (starting with 0) as a string. Consequently, the
variable categoryIndexStr has either the value "" (empty string) or one of "0", "1", "2", etc.

3. Case Study 2: Implementing a Class
Hierarchy
Whenever a class hierarchy is more complex, we cannot simply eliminate it, but have to implement it
(1) in the app's model code, (2) in the underlying database and (3) in its user interface.

Subtyping with Plain JS

27

The starting point for case study 2 is the design model shown in Figure 1.8 above. In the following
sections, we derive a JS class model and a JS entity table model from the design model. The entity table
model is used as a design for the object-to-storage mapping that we need for storing the objects of our
app with the browsers' Local Storage technology.

3.1. Make a JS class model
We design the model classes of our example app with the help of a JS class model that we derive from the
design model by essentially leaving the generalization arrows as they are and just adding get/set methods
and static check functions to each class. However, in the case of our example app, it is natural to apply
the Class Hierarchy Merge design pattern (discussed in Section 5) to the single-subclass-segmentation
of Employee for simplifying the class model by eliminating the Manager subclass. This leads to the
model shown in Figure 2.2 below. Notice that a Person may be an Employee or an Author or both.

Figure 2.2. The JS class model of the Person roles class hierarchy

checkEmpNo(in n : number) : ConstraintViolation
checkCategory(in c : number) : ConstraintViolation
checkDepartment(in d : string) : ConstraintViolation

«get/set» empNo[1] : number {unique}
«get/set» category[0..1] : EmployeeCategoryEL
«get/set» department[0..1] : string

Employee

checkPersonId(in id : string) : ConstraintViolation
checkPersonIdAsId(in id : string, in type) : ConstraintViolation
checkName(in n : string) : ConstraintViolation

«get/set» personId : Integer {id}
«get/set» name : String

Person

checkBiography(in b : string) : ConstraintViolation
«get/set» biography : string

Author

MANAGER

«enumeration»
EmployeeCategoryEL

3.2. Make a JS entity table model
Since we use the browsers' Local Storage as the persistent storage technology for our example app, we
have to deal with simple key-value storage. For each design model class with a singular (capitalized)
name Entity, we use its pluralized lowercase name entities as the corresponding table name.

We design a set of suitable JS entity tables in the form of a JS entity table model that we derive from
the information design model. We have to make certain choices how to organize our data store and how
to derive a corresponding entity table model.

The first choice to make concerns using either the Single Table Inheritance (STI), the Table per Class
Inheritance (TCI) or the Joined Tables Inheritance (JTI) approach, which are introduced in Section 6.4.
In the STI approach, a segmentation (or an entire class hierarchy) is represented with a single table,
containing columns for all attributes of all classes involved, as shown in the example model of Figure 2.3.

Subtyping with Plain JS

28

Figure 2.3. An STI model of the Person roles class hierarchy

personId[1] : number {pkey}
name[1] : string
categories[*] : number {1,2,3}
biography[0..1] : string
empNo[0..1] : number {unique}
department[0..1] : string

«JS entity table»
people category:

1 = Author
2 = Employee
3 = Employee & Manager

Since the given segmentation is non-disjoint, a multi-valued enumeration attribute categories is
used for representing the information to which subclasses an instance belongs.

Using the STI approach is feasible for the given example, since the role hierarchy does not have many
levels and the segment subclasses do not add many attributes. But, in a more realistic example, we
would have a lot more attributes in the segment subclasses of the given role hierarchy. The STI approach
is not really an option for representing a multi-level role hierarchy. However, we may choose it for
representing the single-segment class hierarchy Manager-is-subclass-of-Employee.

For simplicity, and because the browsers' Local Storage does not support foreign keys as required by
JTI, we choose the TCI approach, where we obtain a separate table for each class of the Person
segmentation, but without foreign keys. Our choices result in the model shown in Figure 2.4 below,
which has been derived from the design model shown in Figure Figure 1.8 by

1. Merging the Manager subclass into its superclass Employee, according to the Class Hierarchy
Merge design pattern described in Section 5.

2. Replacing the standard ID property modifier {id} of the personId attribute of Person, Author
and Employee with {pkey} for indicating that the attribute is a primary key.

3. Replacing the singular (capitalized) class names (Person, Author and Employee) with pluralized
lowercase table names (people, authors and employees).

4. Adding the «JS entity table» stereotype to all class rectangles (people, authors and
employees).

5. Replacing the platform-independent datatype names with JS datatype names.

6. Dropping all generalization/inheritance arrows and adding all attributes of supertables (personId
and name) to their subtables (authors and employees).

Subtyping with Plain JS

29

Figure 2.4. A TCI model of the Person roles class hierarchy

personId[1] : number {pkey}
name[1] : string
empNo[1] : number {unique}
category[0..1] : number
department[0..1] : string

«JS entity table»
employees

personId : number {pkey}
name : string

«JS entity table»
people

personId : number {pkey}
name : string
biography : string

«JS entity table»
authors

category:
1 = Manager

In the case of using the JTI approach, we would also take the steps 1-5 above, but instead of step 6,
we would

6. Copy the primary key column (personId) of the root table (people) to all subtables (authors
and employees).

7. Replace the generalization arrows with «fkey»-stereotyped dependency arrows (representing foreign
key dependencies) that are annotated at their source end with the name of the subtable's primary key
(here: personId).

3.3. New issues
Compared to the model of our first case study, shown in Figure 2.1 above, we have to deal with a number
of new issues in the model code:

1. Defining the subclass relationships between Employee and Person, as well as between Author
and Person, using the JS keyword extends discussed in Section 1.

2. When loading the instances of the root class (Person.instances) from persistent storage (in
Person.retrieveAll), we load (1) the records of the table representing the root class (people)
for creating its direct instances and (2) also the records of all other tables representing its subclasses
(authors and employees) for creating their direct instances, while also adding their object
references to the root class population (to Person.instances). In this way, the root class
population does not only contain direct instances, but all instances.

3. When saving the instances of Employee and Author as records of the JS entity
tables employees and authors to persistent storage in Employee.saveAll and
Author.saveAll (invoked in employees.js and authors.js), we also save the direct
instances of Person as records of the people table.

Subtyping with Plain JS

30

3.4. Code the model classes of the JS class
model
The JS class model shown in Figure 2.2 above can be directly coded for getting the code
of the model classes Person, Employee and Author as well as for the enumeration type
EmployeeCategoryEL.

3.4.1. Defining subtype relationships
In the case of a superclass like Person, we define a class-level property subtypes for having a
mechanism to loop over all subtypes of a superclass.

class Person {...}
Person.subtypes = [];

The property subtypes holds a list of all subtypes of the given class. This list is initially empty.

The subtype relationships between the classes Employee and Person, as well as between Author
and Person, are defined with the help of the ES6 keywords extends and super. For instance, in
m/Author.js we define:

class Author extends Person {
 constructor ({personId, name, biography}) {
 super({personId, name}); // invoke Person constructor
 // assign additional properties
 this.biography = biography;
 }
 get biography() {return this._biography;}
 set biography(b) {this._biography = b;} /***SIMPLIFIED CODE: no validation ***/
 toString() {...}
}
// add Author to the list of Person subtypes
Person.subtypes.push(Author);

3.4.2. Loading the instances of a root class
When retrieving the instances of a class hierarchy's root class (in our example, Person) from a
persistent data store organized according to the TCI approach, we have to retrieve not only its direct
instances from the table representing the root class (people), but also all indirect instances from all
tables representing its subclasses (employees and authors), as shown in the following code:

Person.retrieveAll = function () {
 var people = {};
 if (!localStorage["people"]) localStorage["people"] = "{}";
 try {
 people = JSON.parse(localStorage["people"]);
 } catch (e) {
 console.log("Error when reading from Local Storage\n" + e);
 }
 for (const key of Object.keys(people)) {
 try { // convert record to (typed) object
 Person.instances[key] = new Person(people[key]);
 } catch (e) {

Subtyping with Plain JS

31

 console.log(`${e.constructor.name} ...`);
 }
 }
 // add all instances of all subtypes to Person.instances
 for (const Subtype of Person.subtypes) {
 Subtype.retrieveAll();
 for (const key of Object.keys(Subtype.instances)) {
 Person.instances[key] = Subtype.instances[key];
 }
 }
 console.log(`${Object.keys(Person.instances).length} records loaded`);
}

For any subtype (here, Author and Employee), each record is retrieved and a corresponding entry is
created in the map Subtype.instances and copied to Person.instances.

3.4.3. Saving the subtables when saving a supertable
Since the app's data is kept in main memory as long as the app is running (which is as long as the
app's webpage is kept open in the browser), the data has to be saved to persistent storage when the
app is terminated (e.g., by closing its browser tab). When saving the instances of Person (as records
of the people table) to persistent storage in v/people.js, we also save the direct instances of its
subtypes Employee and Author (as records of the JS entity tables employees and authors in
v/employees.js and v/authors.js). This is necessary because changes to Person instances
may imply changes of Employee or Author instances.

We do this in v/people.js:

// save data when leaving the page
window.addEventListener("beforeunload", function () {
 Person.saveAll();
 // save all subtypes for persisting changes of supertype attributes
 for (const Subtype of Person.subtypes) {
 Subtype.saveAll();
 }
});

3.5. Take care of subtypes in the UI
The view table created in the use case "Retrieve/list all people" is to show the roles "author" or
"employee" of each person in a special column "Role(s)".

document.getElementById("RetrieveAndListAll")
 .addEventListener("click", function () {
 ...
 for (const key of Object.keys(Person.instances)) {
 const person = Person.instances[key];
 const row = tableBodyEl.insertRow();
 const roles = [];
 row.insertCell().textContent = person.personId;
 row.insertCell().textContent = person.name;
 for (const Subtype of Person.subtypes) {
 if (person.personId in Subtype.instances) roles.push(Subtype.name);

Subtyping with Plain JS

32

 }
 row.insertCell().textContent = roles.toString();
 }
});

Notice that since the class Employee has the subtype Manager, it would be desirable to see the
role "manager" for any person being an instance of Employee with a category value of
EmployeeCategoryEL.MANAGER. However, for simplicity, this is not implemented in the model
app.

4. Quiz Questions
4.1. Question 1: Defining a Subclass
Which of the following JavaScript code snippets correctly defines two classes A and B, such that B is
a subclass of A? Select one:

1. O

class A {
 constructor (a) {
 this.propA = a;
 }
}
class B extends A {
 constructor (b) {
 this.propB = b;
 }
}

2. O

class A {
 constructor (a) {
 this.propA = a;
 }
}
class B extends A {
 constructor (b) {
 super(b)
 this.propB = b;
 }
}

3. O

class A {
 constructor (a) {
 this.propA = a;
 }
}
class B extends A {
 constructor (a,b) {

Subtyping with Plain JS

33

 super(a)
 this.propB = b;
 }
}

4. O

class A extends B {
 constructor (a) {
 this.propA = a;
 }
}
class B {
 constructor (a,b) {
 super(a)
 this.propB = b;
 }
}

4.2. Question 2: Merging Subclasses
Consider the three classes A with a property propA, B with a property propB and C with a property
propC, such that B and C are subclasses of A. Which of the following class definitions is the correct
result of merging all three classes according to the Class Hierarchy Merge design pattern? Select one:

1. O

ACategoryEL = new Enumeration(["B","C"]);
class Abc {
 constructor (a,b,c) {
 this.propA = a;
 if (b) this.propB = b;
 if (c) this.propC = c;
 }
}

2. O

ACategoryEL = new Enumeration(["B","C"]);
class Abc {
 constructor (a,cat,b,c) {
 this.propA = a;
 this.category = cat; // from ACategoryEL
 if (b) this.propB = b;
 if (c) this.propC = c;
 }
}

3. O

ACategoryEL = new Enumeration(["B","C"]);
class Abc {
 constructor (a,cat,b,c) {
 this.propA = a;

Subtyping with Plain JS

34

 this.category = cat; // from ACategoryEL
 this.propB = b;
 this.propC = c;
 }
}

4. O

ACategoryEL = new Enumeration(["B","C"]);
class Abc {
 constructor (a,cat) {
 this.propA = a;
 this.category = cat; // from ACategoryEL
 }
}

4.3. Question 3: Check Method for Segment
Property
Recall that in a class resulting from applying the Class Hierarchy Merge design pattern, we have segment
properties corresponding to the specific properties of the merged segment classes (subclasses).

How many parameters does the check method for a segment property have? Select one:

1. O one

2. O two

3. O three

5. Practice Project
The purpose of the app to be built in this project is managing information about movies as well as their
directors and actors where two types of movies are distinguished: biographies and episodes of TV series,
as shown in the following model:

*

about

1movieId : PositiveInteger {id}
title : NonEmptyString
releaseDate : Date

Movie

personId[1] : PositiveInteger {id}
name[1] : NonEmptyString

Person

* 1

*

*

Actor

Director

*

agent 1

tvSeriesName : NonEmptyString
episodeNo : PositiveInteger

TvSeriesEpisode
Biography

{disjoint}

Notice that Movie has two rigid (and, hence, disjoint) subtypes, Biography and
TvSeriesEpisode, forming an incomplete disjoint segmentation of Movie, while Person has two

Subtyping with Plain JS

35

non-disjoint subtypes, Director and Actor, forming an incomplete overlapping segmentation of
Person.

Code the app by following the guidance provided in the tutorial.

Make sure that your pages comply with the XML syntax of HTML5, and that your JS code complies
with our Coding Guidelines [http://oxygen.informatik.tu-cottbus.de/webeng/Coding-Guidelines.html]
(and is checked with JSHint [http://www.jshint.com/]).

http://oxygen.informatik.tu-cottbus.de/webeng/Coding-Guidelines.html
http://oxygen.informatik.tu-cottbus.de/webeng/Coding-Guidelines.html
http://www.jshint.com/
http://www.jshint.com/

	JavaScript Front-End Web App Tutorial Part 6: Inheritance in Class Hierarchies
	Table of Contents
	Foreword
	Chapter 1. Subtyping and Inheritance
	1. Introducing Subtypes by Specialization
	2. Introducing Supertypes by Generalization
	3. Intension versus Extension
	4. Type Hierarchies
	5. The Class Hierarchy Merge Design Pattern
	6. Subtyping and Inheritance in Computational Languages
	6.1. Subtyping and inheritance in OOP
	6.2. Subtyping and inheritance with XML Schema
	6.3. Subtyping and inheritance with OWL
	6.4. Representing class hierarchies with SQL database tables
	6.4.1. Single Table Inheritance
	6.4.2. Table per Class Inheritance
	6.4.3. Joined Tables Inheritance

	7. Quiz Questions
	7.1. Question 1: Statements about a Class Hierarchy
	7.2. Question 2: Class Hierarchy Merge
	7.3. Question 3: Multiple Inheritance
	7.4. Question 4: Two ways of subtyping
	7.5. Question 5: Vehicle Class Hierarchy

	Chapter 2. Subtyping with Plain JS
	1. Subtyping with ES6 Classes
	2. Case Study 1: Eliminating a Class Hierarchy
	2.1. Make the JS class model
	2.2. New issues
	2.3. Code the model classes of the JS class model
	2.3.1. Summary
	2.3.2. Code the enumeration type BookCategoryEL
	2.3.3. Code the model class Book

	2.4. Write the User Interface Code
	2.4.1. Summary
	2.4.2. Add a segment information column in Retrieve/List All
	2.4.3. Add a category selection field in Create and Update

	3. Case Study 2: Implementing a Class Hierarchy
	3.1. Make a JS class model
	3.2. Make a JS entity table model
	3.3. New issues
	3.4. Code the model classes of the JS class model
	3.4.1. Defining subtype relationships
	3.4.2. Loading the instances of a root class
	3.4.3. Saving the subtables when saving a supertable

	3.5. Take care of subtypes in the UI

	4. Quiz Questions
	4.1. Question 1: Defining a Subclass
	4.2. Question 2: Merging Subclasses
	4.3. Question 3: Check Method for Segment Property

	5. Practice Project

