
Java Back-End Web App Tutorial Part
6: Inheritance in Class Hierarchies

How to deal with class hierarchies
in a Java EE back-end web app

Gerd Wagner <G.Wagner@b-tu.de>
Mircea Diaconescu <M.Diaconescu@b-tu.de>

Java Back-End Web App Tutorial Part 6: Inheritance in Class
Hierarchies: How to deal with class hierarchies in a Java EE back-
end web app
by Gerd Wagner and Mircea Diaconescu

Warning: This tutorial manuscript may still contain errors and may still be incomplete in certain respects. Please
report any issue to Gerd Wagner at G.Wagner@b-tu.de.

This tutorial is also available in the following formats: PDF [subtyping-tutorial.pdf]. You may run the example app
[http://yew.informatik.tu-cottbus.de/tutorials/java/subtypingapp] from our server, or download it as a ZIP archive
file [SubtypingApp.zip]. See also our Web Engineering project page [http://web-engineering.info/].

Publication date 2018-07-03
Copyright © 2015-2018 Gerd Wagner

This tutorial article, along with any associated source code, is licensed under The Code Project Open License (CPOL) [http://
www.codeproject.com/info/cpol10.aspx], implying that the associated code is provided "as-is", can be modified to create derivative works, can
be redistributed, and can be used in commercial applications, but the article must not be distributed or republished without the author's consent.

http://yew.informatik.tu-cottbus.de/tutorials/java/subtypingapp
http://yew.informatik.tu-cottbus.de/tutorials/java/subtypingapp
SubtypingApp.zip
SubtypingApp.zip
SubtypingApp.zip
http://web-engineering.info/
http://web-engineering.info/
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/info/cpol10.aspx

iii

Table of Contents
Foreword .. v
1. Subtyping and Inheritance ... 1

1. Introducing Subtypes by Specialization .. 1
2. Introducing Supertypes by Generalization .. 2
3. Intension versus Extension .. 3
4. Type Hierarchies ... 4
5. The Class Hierarchy Merge Design Pattern ... 5
6. Subtyping and Inheritance in Computational Languages .. 6

6.1. Subtyping and Inheritance with OOP Classes .. 6
6.2. Subtyping and Inheritance with Database Tables .. 7

2. Subtyping in a Java Back-End App ... 10
1. Subtyping in Java ... 10
2. Case Study 1: Eliminating a Class Hierarchy with Single Table Inheritance 11

2.1. Make the Java Entity class model ... 11
2.2. New issues ... 12
2.3. Code the classes of the Java Entity class model ... 13
2.4. Database schema for single table class hierarchy .. 14
2.5. Write the View and Controller Code ... 14

3. Case Study 2: Implementing a Class Hierarchy with Joined Table Inheritance 17
3.1. Make the Java Entity class model ... 17
3.2. New issues ... 18
3.3. Code the model classes of the Java Entity class model .. 18
3.4. Write the View and Controller Code ... 20

4. Run the App and Get the Code .. 21

iv

List of Figures
1.1. The object type Book with two subtypes: TextBook and Biography 1
1.2. The object types Employee and Author share several attributes ... 2
1.3. The object types Employee and Author have been generalized by adding the common
supertype Person .. 2
1.4. The complete class model containing two inheritance hierarchies .. 3
1.5. A class hierarchy having the root class Vehicle ... 4
1.6. A multiple inheritance hierarchy ... 4
1.7. The design model resulting from applying the Class Hierarchy Merge design pattern 6
1.8. A class model with a Person roles hierarchy .. 8
1.9. An SQL table model with a single table representing the Book class hierarchy 8
1.10. An SQL table model with a single table representing the Person roles hierarchy 9
1.11. An SQL table model with the table Person as the root of a table hierarchy 9
2.1. Student is a subclass of Person .. 10
2.2. The Java Entity class model ... 12
2.3. The Java Entity class model of the Person class hierarchy .. 18

v

Foreword
This tutorial is Part 6 of our series of six tutorials [http://web-engineering.info/JavaJpaJsfApp] about
model-based development of front-end web applications with Java by using JPA and JSF frameworks.
It shows how to build a web app that manages subtype (inheritance) relationships between object types.

The app supports the four standard data management operations (Create/Read/Update/Delete). It is
based on the example used in the other parts, with the object types Book, Person, Author,
Employee and Manager. The other parts are:

• Part 1 [minimal-tutorial.html]: Building a minimal app.

• Part 2 [validation-tutorial.html]: Handling constraint validation.

• Part 3 [enumeration-tutorial.html]: Dealing with enumerations.

• Part 4 [unidirectional-association-tutorial.html]: Managing unidirectional associations between
books and publishers, assigning a publisher to a book, and between books and authors, assigning
authors to a book.

• Part 5 [bidirectional-association-tutorial.html]: Managing bidirectional associations between books
and publishers and between books and authors, also assigning books to authors and to publishers.

http://web-engineering.info/JavaJpaJsfApp
http://web-engineering.info/JavaJpaJsfApp
minimal-tutorial.html
minimal-tutorial.html
validation-tutorial.html
validation-tutorial.html
enumeration-tutorial.html
enumeration-tutorial.html
unidirectional-association-tutorial.html
unidirectional-association-tutorial.html
bidirectional-association-tutorial.html
bidirectional-association-tutorial.html

1

Chapter 1. Subtyping and Inheritance
The concept of a subtype, or subclass, is a fundamental concept in natural language, mathematics, and
informatics. For instance, in English, we say that a bird is an animal, or the class of all birds is a subclass
of the class of all animals. In linguistics, the noun "bird" is a hyponym of the noun "animal".

An object type may be specialized by subtypes (for instance, Bird is specialized by Parrot) or
generalized by supertypes (for instance, Bird and Mammal are generalized by Animal). Specialization
and generalization are two sides of the same coin.

A subtype inherits all features from its supertypes. When a subtype inherits attributes, associations
and constraints from a supertype, this means that these features need not be explicitly rendered for the
subtype in the class diagram, but the reader of the diagram has to know that all features of a supertype
also apply to its subtypes.

When an object type has more than one direct supertype, we have a case of multiple inheritance, which
is common in conceptual modeling, but prohibited in many object-oriented programming languages,
such as Java and C#, where subtyping leads to class hierarchies with a unique direct supertype for each
object type.

1. Introducing Subtypes by Specialization
A new subtype may be introduced by specialization whenever new features of more specific types of
objects have to be captured. We illustrate this for our example model where we want to capture text
books and biographies as special cases of books. This means that text books and biographies also have
an ISBN, a title and a publishing year, but in addition they have further features such as the attribute
subjectArea for text books and the attribute about for biographies. Consequently, we introduce
the object types TextBook and Biography by specializing the object type Book, that is, as subtypes
of Book.

Figure 1.1. The object type Book with two subtypes: TextBook and Biography

isbn : String {id}
title : String
year : Integer

Book

subjectArea : String

TextBook
about : String

Biography

{disjoint}

When specializing an object type, we define additional features for the newly added subtype. In many
cases, these additional features are more specific properties. For instance, in the case of TextBook
specializing Book, we define the additional attribute subjectArea. In some programming languages,
such as in Java, it is therefore said that the subtype extends the supertype.

However, we can also specialize an object type without defining additional properties (or operations/
methods), but by defining additional constraints.

Subtyping and Inheritance

2

2. Introducing Supertypes by
Generalization
We illustrate generalization with the following example, which extends the information model of Part
4 by adding the object type Employee and associating employees with publishers.

Figure 1.2. The object types Employee and Author share several attributes

authorId[1] : Integer {id}
name[1] : String
dateOfBirth[1] : Date
dateOfDeath[0..1] : Date
biography[1] : Text

Author

isbn : String {id}
title : String
year : Integer

Book

* *
name : String {id}
address : String

Publisher

0..1 *

authored
Books

published
Books

employeeNo : Integer {id}
name : String
dateOfBirth : Date
salary : Decimal

Employee

*
0..1

After adding the object type Employee we notice that Employee and Author share a number of
attributes due to the fact that both employees and authors are people, and being an employee as well as
being an author are roles played by people. So, we may generalize these two object types by adding a
joint supertype Person, as shown in the following diagram.

Figure 1.3. The object types Employee and Author have been generalized by
adding the common supertype Person

biography : Text

Authorisbn : String {id}
title : String
year : Integer

Book

* *
name : String {id}
address : String

Publisher

0..1 *

authored
Books

published
Books

employeeNo : Integer {key}
salary : Decimal

Employee

*
0..1

personId[1] : Integer {id}
name[1] : String
dateOfBirth[1] : Date
dateOfDeath[0..1] : Date

Person

When generalizing two or more object types, we move (and centralize) a set of features shared by them
in the newly added supertype. In the case of Employee and Author, this set of shared features consists
of the attributes name, dateOfBirth and dateOfDeath. In general, shared features may include
attributes, associations and constraints.

Notice that since in an information design model, each top-level class needs to have a standard identifier,
in the new class Person we have declared the standard identifier attribute personId, which is
inherited by all subclasses. Therefore, we have to reconsider the attributes that had been declared to
be standard identifiers in the subclasses before the generalization. In the case of Employee, we had
declared the attribute employeeNo as a standard identifier. Since the employee number is an important
business information item, we have to keep this attribute, even if it is no longer the standard identifier.
Because it is still an alternative identifier (a "key"), we define a uniqueness constraint for it with the
constraint keyword key.

Subtyping and Inheritance

3

In the case of Author, we had declared the attribute authorId as a standard identifier. Assuming that
this attribute represents a purely technical, rather than business, information item, we dropped it, since
it's no longer needed as an identifier for authors. Consequently, we end up with a model which allows
to identify employees either by their employee number or by their personId value, and to identify
authors by their personId value.

We consider the following extension of our original example model, shown in Figure 1.4, where we
have added two class hierarchies:

1. the disjoint (but incomplete) segmentation of Book into TextBook and Biography,

2. the overlapping and incomplete segmentation of Person into Author and Employee, which is
further specialized by Manager.

Figure 1.4. The complete class model containing two inheritance hierarchies

biography : Text

Authorisbn : String {id}
title : String
year : Integer

Book

* *
name : String {id}
address : String

Publisher

0..1 *

authored
Books

published
Books

employeeNo : Integer {key}
salary : Decimal

Employee

*
0..1

personId[1] : Integer {id}
name[1] : String
dateOfBirth[1] : Date
dateOfDeath[0..1] : Date

Person

subjectArea : String

TextBook

Manager

ceo

1

0..1

about : String

Biography

managed
Publisher

{disjoint}

3. Intension versus Extension
The intension of an object type is given by the set of its features, including attributes, associations,
constraints and operations.

The extension of an object type is the set of all objects instantiating the object type. The extension of
an object type is also called its population.

We have the following duality: while all features of a supertype are included in the intensions, or feature
sets, of its subtypes (intensional inclusion), all instances of a subtype are included in the extensions, or
instance sets, of its supertypes (extensional inclusion). This formal structure has been investigated in
formal concept analysis [http://en.wikipedia.org/wiki/Formal_concept_analysis].

Due to the intension/extension duality we can specialize a given type in two different ways:

1. By extending the type's intension through adding features in the new subtype (such as adding the
attribute subjectArea in the subtype TextBook).

2. By restricting the type's extension through adding a constraint (such as defining a subtype
MathTextBook as a TextBook where the attribute subjectArea has the specific value
"Mathematics").

http://en.wikipedia.org/wiki/Formal_concept_analysis
http://en.wikipedia.org/wiki/Formal_concept_analysis

Subtyping and Inheritance

4

Typical OO programming languages, such as Java and C#, only support the first possibility (specializing
a given type by extending its intension), while XML Schema and SQL99 also support the second
possibility (specializing a given type by restricting its extension).

4. Type Hierarchies
A type hierarchy (or class hierarchy) consists of two or more types, one of them being the root (or
top-level) type, and all others having at least one direct supertype. When all non-root types have a
unique direct supertype, the type hierarchy is a single-inheritance hierarchy, otherwise it's a multiple-
inheritance hierarchy. For instance, in Figure 1.5 below, the class Vehicle is the root of a single-
inheritance hierarchy, while Figure 1.6 shows an example of a multiple-inheritance hierarchy, due to the
fact that AmphibianVehicle has two direct superclasses: LandVehicle and WaterVehicle.

Figure 1.5. A class hierarchy having the root class Vehicle

Vehicle

LandVehicle WaterVehicle

Bike Car Sailboat

{disjoint} {disjoint}

SubmarineTruck

The simplest case of a class hierarchy, which has only one level of subtyping, is called a generalization
set in UML, but may be more naturally called segmentation. A segmentation is complete, if the union of
all subclass extensions is equal to the extension of the superclass (or, in other words, if all instances of the
superclass instantiate some subclass). A segmentation is disjoint, if all subclasses are pairwise disjoint
(or, in other words, if no instance of the superclass instantiates more than one subclass). Otherwise, it
is called overlapping. A complete and disjoint segmentation is a partition.

Figure 1.6. A multiple inheritance hierarchy

Vehicle

LandVehicle WaterVehicle

Bike Car AmphibianVehicle Sailboat

{disjoint} {disjoint}

In a class diagram, we can express these constraints by annotating the shared generalization arrow with
the keywords complete and disjoint enclosed in braces. For instance, the annotation of a segmentation
with {complete, disjoint} indicates that it is a partition. By default, whenever a segmentation does not
have any annotation, like the segmentation of Vehicle into LandVehicle and WaterVehicle
in Figure 1.6 above, it is {incomplete, overlapping}.

An information model may contain any number of class hierarchies.

Subtyping and Inheritance

5

5. The Class Hierarchy Merge Design
Pattern
Consider the simple class hierarchy of the design model in Figure 1.1 above, showing a disjoint
segmentation of the class Book. In such a case, whenever there is only one level (or there are only a few
levels) of subtyping and each subtype has only one (or a few) additional properties, it's an option to re-
factor the class model by merging all the additional properties of all subclasses into an expanded version
of the root class such that these subclasses can be dropped from the model, leading to a simplified model.

This Class Hierarchy Merge design pattern comes in two forms. In its simplest form, the segmentations
of the original class hierarchy are disjoint, which allows to use a single-valued category attribute for
representing the specific category of each instance of the root class corresponding to the unique subclass
instantiated by it. When the segmentations of the original class hierarchy are not disjoint, that is, when
at least one of them is overlapping, we need to use a multi-valued category attribute for representing
the set of types instantiated by an object. In this tutorial, we only discuss the simpler case of Class
Hierarchy Merge re-factoring for disjoint segmentations, where we take the following re-factoring steps:

1. Add an enumeration datatype that contains a corresponding enumeration literal for each segment
subclass. In our example, we add the enumeration datatype BookCategoryEL.

2. Add a category attribute to the root class with this enumeration as its range. The category
attribute is mandatory [1], if the segmentation is complete, and optional [0..1], otherwise. In
our example, we add a category attribute with range BookCategoryEL to the class Book.
The category attribute is optional because the segmentation of Book into TextBook and
Biography is incomplete.

3. Whenever the segmentation is rigid (does not allow dynamic classification), we designate the
category attribute as frozen, which means that it can only be assigned once by setting its value
when creating a new object, but it cannot be changed later.

4. Move the properties of the segment subclasses to the root class, and make them optional. We call
these properties, which are typically listed below the category attribute, segment properties.
In our example, we move the attribute subjectArea from TextBook and about from
Biography to Book, making them optional, that is [0..1].

5. Add a constraint (in an invariant box attached to the expanded root class rectangle) enforcing that
the optional subclass properties have a value if and only if the instance of the root class instantiates
the corresponding category. In our example, this means that an instance of Book is of category
"TextBook" if and only if its attribute subjectArea has a value, and it is of category "Biography"
if and only if its attribute about has a value.

6. Drop the segment subclasses from the model.

In the case of our example, the result of this design re-factoring is shown in Figure 1.7 below.
Notice that the constraint (or "invariant") represents a logical sentence where the logical operator
keyword "IFF" stands for the logical equivalence operator "if and only if" and the property condition
prop=undefined tests if the property prop does not have a value.

Subtyping and Inheritance

6

Figure 1.7. The design model resulting from applying the Class Hierarchy Merge
design pattern

isbn[1] : String {id}
title[1] : String
year[1] : Integer
category[0..1] : BookTypeEL {frozen}
subjectArea[0..1] : String
about[0..1] : String

Book

TextBook
Biography

«enumeration»
BookTypeEL

«invariant»
{(category="TextBook" IFF NOT subjectArea=undefined) AND
(category="Biography" IFF NOT about=undefined)}

6. Subtyping and Inheritance in
Computational Languages
Subtyping and inheritance have been supported in Object-Oriented Programming (OOP), in database
languages (such as SQL99), in the XML schema definition language XML Schema, and in other
computational languages, in various ways and to different degrees. At its core, subtyping in
computational languages is about defining type hierarchies and the inheritance of features: mainly
properties and methods in OOP; table columns and constraints in SQL99; elements, attributes and
constraints in XML Schema.

In general, it is desirable to have support for multiple classification and multiple inheritance in type
hierarchies. Both language features are closely related and are considered to be advanced features, which
may not be needed in many applications or can be dealt with by using workarounds.

Multiple classification means that an object has more than one direct type. This is mainly the case
when an object plays multiple roles at the same time, and therefore directly instantiates multiple classes
defining these roles. Multiple inheritance is typically also related to role classes. For instance, a student
assistant is a person playing both the role of a student and the role of an academic staff member,
so a corresponding OOP class StudentAssistant inherits from both role classes Student and
AcademicStaffMember. In a similar way, in our example model above, an AmphibianVehicle
inherits from both role classes LandVehicle and WaterVehicle.

6.1. Subtyping and Inheritance with OOP Classes
The minimum level of support for subtyping in OOP, as provided, for instance, by Java and C#, allows
defining inheritance of properties and methods in single-inheritance hierarchies, which can be inspected
with the help of an is-instance-of predicate that allows testing if a class is the direct or an indirect type
of an object. In addition, it is desirable to be able to inspect inheritance hierarchies with the help of

1. a predefined instance-level property for retrieving the direct type of an object (or its direct types,
if multiple classification is allowed);

2. a predefined type-level property for retrieving the direct supertype of a type (or its direct supertypes,
if multiple inheritance is allowed).

A special case of an OOP language is JavaScript, which does not (yet) have an explicit language element
for classes, but only for constructors. Due to its dynamic programming features, JavaScript allows using

Subtyping and Inheritance

7

various code patterns for implementing classes, subtyping and inheritance (as we discuss in the next
section on JavaScript).

6.2. Subtyping and Inheritance with Database
Tables
A standard DBMS stores information (objects) in the rows of tables, which have been conceived as set-
theoretic relations in classical relational database systems. The relational database language SQL is used
for defining, populating, updating and querying such databases. But there are also simpler data storage
techniques that allow to store data in the form of table rows, but do not support SQL. In particular, key-
value storage systems, such as JavaScript's Local Storage API, allow storing a serialization of a JSON
table (a map of records) as the string value associated with the table name as a key.

While in the classical, and still dominating, version of SQL (SQL92) there is no support for
subtyping and inheritance, this has been changed in SQL99. However, the subtyping-related language
elements of SQL99 have only been implemented in some DBMS, for instance in the open source
DBMS PostgreSQL. As a consequence, for making a design model that can be implemented with
various frameworks using various SQL DBMSs (including weaker technologies such as MySQL and
SQLite), we cannot use the SQL99 features for subtyping, but have to model inheritance hierarchies
in database design models by means of plain tables and foreign key dependencies. This mapping
from class hierarchies to relational tables (and back) is the business of Object-Relational-Mapping
frameworks such as Hibernate [http://en.wikipedia.org/wiki/Hibernate_%28Java%29] (or any other
JPA [http://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F] Provider) or the Active Record
[http://guides.rubyonrails.org/association_basics.html] approach of the Rails [http://rubyonrails.org/]
framework.

There are essentially two alternative approaches how to represent a class hierarchy with relational tables:

1. Single Table Inheritance [http://www.martinfowler.com/eaaCatalog/singleTableInheritance.html]
is the simplest approach, where the entire class hierarchy is represented with a single table, containing
columns for all attributes of the root class and of all its subclasses, and named after the name of the
root class.

2. Joined Tables Inheritance [http://en.wikibooks.org/wiki/Java_Persistence/
Inheritance#Joined.2C_Multiple_Table_Inheritance] is a more logical approach, where each subclass
is represented by a corresponding subtable connected to the supertable via its primary key referencing
the primary key of the supertable.

Notice that the Single Table Inheritance approach is closely related to the Class Hierarchy Merge design
pattern discussed in Section 5 above. Whenever this design pattern has already been applied in the
design model, or the design model has already been re-factored according to this design pattern, the
class hierarchies concerned (their subclasses) have been eliminated in the design, and consequently also
in the data model to be coded in the form of class definitions in the app's model layer, so there is no need
anymore to map class hierarchies to database tables. Otherwise, when the Class Hierarchy Merge design
pattern does not get applied, we would get a corresponding class hierarchy in the app's model layer, and
we would have to map it to database tables with the help of the Single Table Inheritance approach.

We illustrate both the Single Table Inheritance approach and the Joined Tables Inheritance with the help
of two simple examples. The first example is the Book class hierarchy, which is shown in Figure 1.1
above. The second example is the class hierarchy of the Person roles Employee, Manager and
Author, shown in the class diagram in Figure 1.8 below.

http://en.wikipedia.org/wiki/Hibernate_%28Java%29
http://en.wikipedia.org/wiki/Hibernate_%28Java%29
http://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F
http://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F
http://guides.rubyonrails.org/association_basics.html
http://guides.rubyonrails.org/association_basics.html
http://rubyonrails.org/
http://rubyonrails.org/
http://www.martinfowler.com/eaaCatalog/singleTableInheritance.html
http://www.martinfowler.com/eaaCatalog/singleTableInheritance.html
http://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Joined.2C_Multiple_Table_Inheritance
http://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Joined.2C_Multiple_Table_Inheritance
http://en.wikibooks.org/wiki/Java_Persistence/Inheritance#Joined.2C_Multiple_Table_Inheritance

Subtyping and Inheritance

8

Figure 1.8. A class model with a Person roles hierarchy

empNo : Integer {key}

Employee

personId : Integer {id}
name : String

Person

biography : String

Author

department : String

Manager

6.2.1. Single Table Inheritance
Consider the single-level class hierarchy shown in Figure 1.1 above, which is an incomplete disjoint
segmentation of the class Book, as the design for the model classes of an MVC app. In such a case,
whenever we have a model class hierarchy with only one level (or only a few levels) of subtyping and
each subtype has only one (or a few) additional properties, it's preferable to use Single Table Inheritance,
so we model a single table containing columns for all attributes such that the columns representing
additional attributes of subclasses are optional, as shown in the SQL table model in Figure 1.9 below.

Figure 1.9. An SQL table model with a single table representing the Book class
hierarchy

isbn[1] : VARCHAR {pkey}
title[1] : VARCHAR
year[1] : INTEGER
category[0..1] : VARCHAR ["TextBook","Biography"]
subjectArea[0..1] : VARCHAR
about[0..1] : VARCHAR

«table»
Book

«invariant»
{(category="TextBook" IFF notNULL(subjectArea)) AND
(category="Biography" IFF notNULL(about))}

Notice that it is good practice to add a special discriminator column for representing the category of
each row corresponding to the subclass instantiated by the represented object. Such a column would
normally be string-valued, but constrained to one of the names of the subclasses. If the DBMS supports
enumerations, it could also be enumeration-valued. We use the name category for the discriminator
column.

Based on the category of a book, we have to enforce that if and only if it is "TextBook", its attribute
subjectArea has a value, and if and only if it is "Biography", its attribute about has a value. This
implied constraint is expressed in the invariant box attached to the Book table class in the class diagram
above, where the logical operator keyword "IFF" represents the logical equivalence operator "if and
only if". It needs to be implemented in the database, e.g., with an SQL table CHECK clause or with
SQL triggers.

Consider the class hierarchy shown in Figure 1.8 above. With only three additional attributes defined in
the subclasses Employee, Manager and Author, this class hierarchy could again be implemented

Subtyping and Inheritance

9

with the Single Table Inheritance approach. In the SQL table model, we can express this as shown in
Figure 1.10 below.

Figure 1.10. An SQL table model with a single table representing the Person
roles hierarchy

personId[1] : INTEGER {pkey}
name[1] : VARCHAR
category[0..1] : VARCHAR ["Employee","Manager","Author"]
empNo[0..1] : INTEGER {unique}
biography[0..1] : VARCHAR
department[0..1] : VARCHAR

«table»
Person

«invariant»
{(category="Employee" IFF notNULL(empNo)) AND
(category="Manager" IFF notNULL(empNo) && notNULL(department)) AND
(category="Author" IFF notNULL(biography))}

In the case of a multi-level class hierarchy where the subclasses have little in common, the Single Table
Inheritance approach does not lead to a good representation.

6.2.2. Joined Tables Inheritance
In a more realistic model, the subclasses of Person shown in Figure 1.8 above would have many more
attributes, so the Single Table Inheritance approach would be no longer feasible, and the Joined Tables
Inheritance approach would be needed. In this approach we get the SQL data model shown in Figure 1.11
below. This SQL table model connects subtables to their supertables by defining their primary key
attribute(s) to be at the same time a foreign key referencing their supertable. Notice that foreign keys
are visuallized in the form of UML dependency arrows stereotyped with «fkey» and annotated at their
source table side with the name of the foreign key column.

Figure 1.11. An SQL table model with the table Person as the root of a table
hierarchy

personId : INTEGER {pkey}
empNo : INTEGER {unique}

«table»
Employee

personId : INTEGER {pkey}
name : VARCHAR

«table»
Person

personId : INTEGER {pkey}
biography : VARCHAR

«table»
Author

personId : INTEGER {pkey}
department : VARCHAR

«table»
Manager

«fkey»

personId

«fkey»

personId

personId

<<fkey>>

The main disadvantage of the Joined Tables Inheritance approach is that for querying any subclass join
queries are required, which may create a performance problem.

10

Chapter 2. Subtyping in a Java Back-
End App
Whenever an app has to manage the data of a larger number of object types, there may be various
subtype (inheritance) relationships between some of the object types. Handling subtype relationships
is an advanced issue in software application engineering. It is often not well supported by application
development frameworks.

In this chapter of our tutorial, we explain two case studies based on fragments of the information model
of our running example, the Public Library app, shown above.

In the first case study, we consider the single-level class hierarchy with root Book shown in Figure 1.1,
which is an incomplete disjoint segmentation. We use the Single Table Inheritance approach for
mapping this class hierarchy to a single database table.

In the second case study, we consider the multi-level class hierarchy consisting of the Person roles
Employee, Manager and Author, shown in Figure 1.8. We use the Joined Table Inheritance
approach for mapping this class hierarchy to a set of database tables that are related with each other via
foreign key dependencies.

In both cases we show

1. how to derive a Java Entity class model,

2. how to code the Java Entity class model in the form of Java Entity classes (as model classes),

3. how to write the view and controller code based on the model code.

1. Subtyping in Java
Java provides built-in support for subtyping with its extends keyword, but it does not support multiple
inheritance. Consider the information design model shown in Figure 2.1 below.

Figure 2.1. Student is a subclass of Person

firstName : String
lastName : String

Person

studNo : Integer

Student

First we define the superclass Person. Then, we define the subclass Student and its subtype
relationship to Person by means of the extends keyword:

public class Person {
 private String firstName;
 private String lastName;

Subtyping in a Java
Back-End App

11

 ...
}
public class Student extends Person {
 private int studentNo;

 public Student(String first, String last, int studNo) {
 super(firstName, lastName);
 this.setStudNo(studNo);
 }
 ...
}

Notice that in the Student class, we define a constructor with all the parameters required to create
an instance of Student. In this subclass constructor we use super to invoke the constructor of the
superclass Person.

2. Case Study 1: Eliminating a Class
Hierarchy with Single Table Inheritance
In this example we implement the Book hierarchy shown in Figure 1.1. The Java Entity class model is
derived from this design model.

2.1. Make the Java Entity class model
We make the Java Entity class model in 3 steps:

1. For every class in the model, we create a Java Entity class with the corresponding properties and add
the set and get methods corresponding to each property.

2. Turn the plaform-independent datatypes (defined as the ranges of attributes) into Java datatypes.

3. Add the set and get methods corresponding to each direct property of every class in the hierarchy
(subclasses must not define set and get method for properties in superclasses, but only for their direct
properties).

This leads to the Java Entity class model shown in Figure 2.2.

Subtyping in a Java
Back-End App

12

Figure 2.2. The Java Entity class model

+checkIsbnAsId(in em : EntityManager) : ConstraintViolation
+toString() : String
+create(in isbn : String, in title : String, in year : Integer)
+retrieveAll() : Book[*]
+...()

«get/set» -isbn : String {id}
«get/set» -title : String
«get/set» -year : Integer

«Entity»
Book

+toString() : String
+create(in i : String, in t : String, in y : Integer, in sA : String)
+retrieveAll() : TextBook[*]
+...()

«get/set» -subjectArea : String

«Entity»
TextBook

+toString() : String
+create(in i : String, in t : String, in y : Integer, in a : String)
+retrieveAll() : Biography[*]
+...()

«get/set» -about : String

«Entity»
Biography

{disjoint}

TEXTBOOK
BIOGRAPHY

«enumeration»
BookTypeEL

2.2. New issues
Compared to the validation app [ValidationApp/index.html] discussed in Part 2 of this tutorial, we have
to deal with a number of new issues:

1. In the model code we have to take care of:

a. Coding the enumeration type (BookTypeEL in our example) used in the views rendering to create
a select list for the special case of book. Notice that this enumeration is not really used in the model
classes (we discuss further the reasons), but only with the purpose to have the book category (i.e.,
special type) rendered in the facelets. Read Part 3 enumeration app [EnumerationApp/index.html]
for detailed instructions on how to implement enumerations in Java.

b. Code each class from the Book hierarchy using suitable JPA annotations for persistent storage in
a corresponding database table, like books.

2. In the UI code we have to take care of:

a. Adding a "Special type" column to the display table of the "List all books" use case in
WebContent/views/books/listAll.xhtml. A book without a special category will
have an empty table cell, while for all other books their category will be shown in this cell, along
with other segment-specific attribute values.

b. Adding a "Special type" select control, and corresponding form fields for all segment properties, in
the forms of the "Create book" and "Update book" use cases in WebContent/views/books/
create.xhtml and WebContent/views/books/update.xhtml. Segment property
form fields are only displayed, and their validation is performed, when a corresponding book
category has been selected. Such an approach of rendering specific form fields only on certain
conditions is sometimes called "dynamic forms".

ValidationApp/index.html
ValidationApp/index.html
EnumerationApp/index.html
EnumerationApp/index.html

Subtyping in a Java
Back-End App

13

2.3. Code the classes of the Java Entity class
model
The Java Entity class model can be directly coded for getting the code of the model classes of our Java
back-end app.

2.3.1. Summary
1. Code the enumeration type (to be used in the facelets) .

2. Code the model classes and add the corresponding JPA annotations for class hierarchy.

These steps are discussed in more detail in the following sections.

2.3.2. Code the enumeration type BookTypeEL
The enumeration type BookTypeEL is coded as a Java enum, and we probide enumeration literals as
well as assign label (human readable) to each enumeration literal:

public enum BookTypeEL {
 TEXTBOOK("TextBook"), BIOGRAPHY("Biography");
 private final String label;

 private BookTypeEL(String label) {
 this.label = label;
 }
 public String getLabel() {return this.label;}
}

2.3.2.1. Code the model classes

We code the model classes Book, TextBook and Biography in the form of Java Entity classes using
suitable JPA annotations:

@Entity @Table(name="books")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="category",
 discriminatorType=DiscriminatorType.STRING, length=16)
@DiscriminatorValue(value = "BOOK")
@ManagedBean(name="book") @ViewScoped
public class Book {
 @Id @Column(length=10)
 @NotNull(message="An ISBN is required!")
 @Pattern(regexp="\\b\\d{9}(\\d|X)\\b", message="The ISBN must be a ...!")
 private String isbn;
 @Column(nullable=false) @NotNull(message="A title is required!")
 private String title;
 @Column(nullable=false) @NotNull(message="A year is required!")
 @UpToNextYear
 @Min(value=1459, message="The year must not be before 1459!")
 private Integer year;
 // constructors, set, get and other methods
 ...

Subtyping in a Java
Back-End App

14

}

When using the JPA Single Table Inheritance technique for a class hierarchy, the @Inheritance
annotation must be set for the superclass (e.g, Book in our example). It provides the strategy
parameter with the value InheritanceType.SINGLE_TABLE. The @DiscriminatorColumn
annotation specifies the name of the table column storing the values that discriminate between different
types of subclasses (TextBook and Biography, in our example). Unfortunately, we cannot use
our BookTypeEL enumeration for defining the values of the DiscriminatorColumn name parameter,
because expressions like BookCategoryEL.TEXTBOOK.name() are not constant, so a Java
compiler exception is thrown. The @DiscriminatorValue annotation specifies a unique value to
be stored in the discriminator column.

Further, we define the subtypes TextBook and Biography:

@Entity @Table(name="textbooks")
@DiscriminatorValue(value="TEXTBOOK")
@ManagedBean(name="textBook") @ViewScoped
public class TextBook extends Book {
 @Column(nullable=false) @NotNull(message="A subject area value is required")
 String subjectArea;
 // constructors, set, get and other methods
 ...
}

TextBook and Biography are subclasses of Book, so we define them with extends Book. For
each subclass, we add a @DiscriminatorValue annotation with a value from the BookTypeEL
enumeration.

2.4. Database schema for single table class
hierarchy
As a result of the @Inheritance(strategy=InheritanceType.SINGLE_TABLE)
annotation, only one database table is used for representing a class hierarchy. This table contains the
columns corresponding to all the properties of all the classes from the hierarchy plus the discriminator
column. In our example, the books table contains the following columns: isbn, title, year,
subjectArea, about and category. The simplified corresponding SQL-DDL code internally
used to generate the books table for our application is shown below:

CREATE TABLE IF NOT EXISTS `books` (
 `ISBN` varchar(10) NOT NULL,
 `TITLE` varchar(255) NOT NULL,
 `YEAR` int(11) NOT NULL,
 `SUBJECTAREA` varchar(255) DEFAULT NULL,
 `ABOUT` varchar(255) DEFAULT NULL,
 `category` varchar(16) DEFAULT NULL,
)

2.5. Write the View and Controller Code
The user interface (UI) consists of a start page that allows navigating to the data management pages
(in our example, to WebContent/views/books/index.xhtml). Such a data management page
contains 4 sections: list books, create book, update book and delete book.

Subtyping in a Java
Back-End App

15

2.5.1. Summary
We have to take care of handling the category discriminator and the subjectArea and about
segment properties both in the "List all books" use case as well as in the "Create book" and "Update
book" use cases by

1. Adding a segment information column ("Special type") to the display table of the "List all books"
use case in WebContent/views/books/listAll.xhtml.

2. Adding a "Special type" select control, and corresponding form fields for all segment properties, in
the forms of the "Create book" and "Update book" use cases in WebContent/views/books/
create.xhtml and WebContent/views/books/create.xhtml. Segment property form
fields are only displayed, and their validation occurs only when a corresponding book category has
been selected.

2.5.2. Adding a segment information column in "List all
books"
We add a "Special type" column to the display table of the "List all books" use case in books.html:

<h:dataTable value="#{bookController.books}" var="b">
 ...
 <h:column>
 <f:facet name="header">Special type</f:facet>
 #{b.getClass().getSimpleName() != 'Book' ? b.getClass().getSimpleName() : ''}
 </h:column>
</h:dataTable>

A conditional expression is used to check if the Java bean class name is Book, in which case we don't
show it, or if it is something else (e.g. TextBook or Biography), and then it is shown. This expression
also shows how you can call/use various Java bean methods, not only custom methods.

2.5.3. Adding a "Special type" select control in "Create
book" and "Update book"
In both use cases, we need to allow selecting a special category of book ('textbook' or 'biography') with
the help of a select control, as shown in the following HTML fragment:

<h:panelGrid id="bookPanel" columns="3">
 ...
 <h:outputText value="Special type: " />
 <h:selectOneMenu id="bookType" value="#{viewScope.bookTypeVal}">
 <f:selectItem itemLabel="---"/>
 <f:selectItems value="#{book.typeItems}" />
 <f:ajax event="change" execute="@this"
 render="textBookPanel biographyBookPanel standardBookPanel" />
 </h:selectOneMenu>
 <h:message for="bookType" errorClass="error" />
</h:panelGrid>

<h:panelGroup id="standardBookPanel">

Subtyping in a Java
Back-End App

16

 <h:commandButton value="Create" rendered="#{viewScope.bookTypeVal == null}"
 action="#{bookController.add(book.isbn, book.title, book.year)}" />
</h:panelGroup>

<h:panelGroup id="textBookPanel">
 <h:panelGrid rendered="#{viewScope.bookTypeVal == 'TEXTBOOK'}" columns="3">
 <h:outputText value="Subject area: " />
 <h:inputText id="subjectArea" value="#{textBook.subjectArea}"/>
 <h:message for="subjectArea" errorClass="error" />
 </h:panelGrid>
 <h:commandButton value="Create" rendered="#{viewScope.bookTypeVal == 'TEXTBOOK'}"
 action="#{textBookController.add(book.isbn, book.title, book.year, textBook.subjectArea)}" />
</h:panelGroup>

<h:panelGroup id="biographyBookPanel">
 <h:panelGrid rendered="#{viewScope.bookTypeVal == 'BIOGRAPHY'}" columns="3">
 <h:outputText value="About: " />
 <h:inputText id="about" value="#{biographyBook.about}"/>
 <h:message for="about" errorClass="error" />
 </h:panelGrid>
 <h:commandButton value="Create" rendered="#{viewScope.bookTypeVal == 'BIOGRAPHY'}"
 action="#{biographyBookController.add(book.isbn, book.title, book.year, biographyBook.about)}" />
</h:panelGroup>

There are a few important remarks on the above view code:

• the h:selectOneMenu is used to create a single selection list which is populated with book tiutles
by using the getTypeItems method of the Book class. A more detailed explanation is presented
in Part 3 enumeration app [EnumerationApp/index.html].

• it is possible to conditionally render facelet components by using the rendered attribute. The JSF
EL expression must return true or false, this making the HTML resulting elements to be part of
the HTML DOM or not. Notice that the conditional expressions are evaluated in the server side. This
is the method we use to hide or show the input form elements corresponding to various book types
(e.g., TextBook has a subjectArea property while Biography has an about property).

• the render attribute used with f:ajax specifies which of the JSF components are to be updated .
This is needed because of the live DOM changes (client side, not server side) which applies after
the AJAX call.

• AJAX is used to submit form for reevaluation when the special type select list is changed (something
is selected). As a result, it enforces the rendering of the three panels corresponding to three book cases:
simple book, text book and biography. Using execute="@this" we enforce the re-evaluation of
the form at server side, so the resulting HTML DOM structure contains the changes accordiong with
the conditions specified by the rendered attributes of the various JSF elements. Notice that an JSF
element which has a conditional rendered expression must be child of another JSF element which
is always part of the DOM.

• h:panelGroup is used to define a set of elements which are shown or hidden.

• the action attribute of the h:commandButton can't be used with conditional expressions,
therefore we have to create three command buttons, one for each case: create/update a Book,
a TextBook or a Biography. The add method of the corresponding controller class (i.e.,
BookController, TextBookController or BiographyController is called).

EnumerationApp/index.html
EnumerationApp/index.html

Subtyping in a Java
Back-End App

17

• since we do not have a corresponding property in the Java bean class(es) for the special type
(category), we can use JSF variables to store the value of the single select list, and then use the
variable in rendered conditions for various elements. Therefore, for the h:selectOneMenu, the
value="#{viewScope.bookTypeVal}" specifies that we use a "on the fly" defined property
named bookTypeVal, which is part of the view scope internal JSF object(s). We can also define
such variable outside the view scope, e.g., value="#{bookTypeVal}", but in this case they
are request scoped, so their value is lost after submitting the form, and the rendered conditions
can't be correctly evaluated.

For a class in the class hierarchy, one corresponding controller class is defined. It contains the specific
add, update and destroy methods (see . The shared methods, such as getAllObjects are
defined by the controller of the top level class (e.g., for our example, this is BookController). See
minimal app [MinimalApp/index.html] for more details on how to implement the controller class and
the corresponding CRUD methods.

The Update Book test case is very similar with the Create Book test case. The Delete Book test case
remains unchanged, see See minimal app [MinimalApp/index.html] for more details.

3. Case Study 2: Implementing a Class
Hierarchy with Joined Table Inheritance
The starting point for our case study is the design model shown in Figure 1.8 above. In the following
sections, we show how to eliminate the Manager class by using the Class Hierarchy Merge design
pattern and how to implement the Person hierarchy and use Joined, Multiple Table Inheritance storage
with the help of JPA framework.

3.1. Make the Java Entity class model
We design the model classes of our example app with the help of a Java Entity class model that we
derive from the design model by essentially leaving the generalizatiion arrows as they are and just adding
getters and setters to each class. However, in the case of our example app, it is natural to apply the Class
Hierarchy Merge design pattern to the segmentation of Employee for simplifying the data model by
eliminating the Manager subclass. This leads to the model shown in Figure 2.3 below. Notice that we
have also made two technical design decisions:

1. We have declared the segmentation of Person into Employee and Author to be complete, that
is, any person is an employee or an author (or both).

2. We have turned Person into an abstract class (indicated by its name written in italics in the
class rectangle), which means that it cannot have direct instances, but only indirect ones via its
subclasses Employee and Author. This technical design decision is compatible with the fact that
any Person is an Employee or an Author (or both), and consequently there is no need for any
object to instantiate Person directly.

MinimalApp/index.html
MinimalApp/index.html
MinimalApp/index.html
MinimalApp/index.html

Subtyping in a Java
Back-End App

18

Figure 2.3. The Java Entity class model of the Person class hierarchy

+getPersonId() : Integer
+setPersonId(in personId : Integer)
+getName() : String
+setName(in name : String)

«stdid» -personId : Integer
-name : String

Person

MANAGER = Manager

«enumeration»
EmployeeTypeEL

+getEmpNo() : Integer
+setEmpNo(in empNo : Integer)
+getType() : EmployeeTypeEL
+setType(in type : EmployeeTypeEL)
+getDepartment() : String
+setDepartment(in department : String)

-empNo : Integer
-type : EmployeeTypeEL
-department : String

Employee

+getBiography() : String
+setBiography(in biography : String)

-biography

Author

3.2. New issues
Compared to the model of our first case study, shown in Figure 2.2 above, we have to define the category
relationships between Employee and Person, as well as between Author and Person, using the
JPA annotation.

In the UI code we have to take care of:

1. Adding the views (in the folders WebContent/views/authors and WebContent/views/
employees) and controller classes (AuthorController and EmployeeController) for
the corresponding Author and Employee model classes.

2. Deal with the Manager case, by adding a "Special type" select control, in the forms of the "Create
book" and "Update book" use cases in WebContent/views/books/create.xhtml and
WebContent/views/books/update.xhtml. Segment property form fields (i.e., department
in our example) are only displayed, and their validation is performed, when a corresponding employee
type has been selected.

3.3. Code the model classes of the Java Entity
class model
The Java Entity class model shown in Figure 2.3 above is coded by using the JavaBeans Person,
Employee and Author as well as for the enmueration type EmployeeTypeEL.

3.3.1. Define the category relationships
We define the category relationships between Employee and Person, as well as between Author
and Person, using the JPA annotations. At first we create the Person class as shown below:

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
@DiscriminatorColumn(name = "category", discriminatorType = DiscriminatorType.STRING, length = 16)
@Table(name = "persons")

Subtyping in a Java
Back-End App

19

public abstract class Person {
 @Id
 @PositiveInteger
 @NotNull(message = "A person ID value is required!")
 private Integer personId;
 @Column(nullable = false)
 @NotNull(message = "A name is required!")
 private String name;

 // constructors, set, get and other methods
}

Comparing with the Book hierarchy shown in Test Case 1, the @Inheritance annotations defines
now the strategy = InheritanceType.JOINED. This means, for every class in the inheritance
hierarchy, a database table is used. The @DiscriminatorColumn(name = "category")
specifies the column in the corresponding table (i.e., persons) of the top hierarchy class (i.e., Person)
which stores the discriminator values used to identify the stored type of each entry (table row).

Notice that the Java class Person is declared as being abstract, which means it can't be initialized,
instead we can and we initialize subclasses derived from it (i.e., Employee and Author). This also
mean that we don't declare a @DiscriminatorValue because no direct instance of Person is
stored in the database table.

Further, we define the Author class as follows:

@Entity
@DiscriminatorValue(value = "AUTHOR")
@Table(name = "authors")
@ManagedBean(name = "author")
@ViewScoped
public class Author extends Person {
 @NotNull(message = "A biography is required!")
 private String biography;

 // constructors, set, get and other methods
}

The Author class inherits Person, therefore the get and set methods corresponding to personId and
name properties are available. The @DiscriminatorValue(value = "AUTHOR") specifies
that the column category of the persons table stores the value AUTHOR for every entry which comes
from persisting an Author instance.

Last we define the Employee class:

@Entity
@DiscriminatorValue(value = "EMPLOYEE")
@Table(name = "employees")
@ManagedBean(name = "employee")
@ViewScoped
public class Employee extends Person {
 @Column(nullable = false)
 @NotNull(message = "An employee ID is required!")
 @Min(value = 20000, message = "Employee no. must be greater than 20000!")
 @Max(value = 99999, message = "Employee no. must be lower than 100000!")

Subtyping in a Java
Back-End App

20

 private Integer empNo;
 @Column(nullable = false, length = 32)
 @Enumerated(EnumType.STRING)
 private EmployeeTypeEL type;
 @Column(nullable = true, length = 64)
 private String department;

 // constructors, set, get and other methods
}

Notice the type property used to identify the Employee type, such as Manager. Its values are defined
by the EmployeeTypeEL enumeration.

3.3.2. Database schema for joined table class hierarchy
As a result of the @Inheritance(strategy = InheritanceType.JOINED) annotation, for
each class in the inheritance hierarchy, one database table is created. The corresponding simplified SQL-
DDL scripts used by JPA to create the persons, authors and employees tables are shown below:

CREATE TABLE IF NOT EXISTS `persons` (
 `PERSONID` int(11) NOT NULL,
 `category` varchar(16) DEFAULT NULL,
 `NAME` varchar(255) NOT NULL
);

CREATE TABLE IF NOT EXISTS `authors` (
 `PERSONID` int(11) NOT NULL,
 `BIOGRAPHY` varchar(255) DEFAULT NULL
);
ADD CONSTRAINT `FK_authors_PERSONID` FOREIGN KEY (`PERSONID`) REFERENCES `persons` (`PERSONID`);

CREATE TABLE IF NOT EXISTS `employees` (
 `PERSONID` int(11) NOT NULL,
 `DEPARTMENT` varchar(64) DEFAULT NULL,
 `EMPNO` int(11) NOT NULL,
 `TYPE` varchar(32) DEFAULT NULL
);
ADD CONSTRAINT `FK_employees_PERSONID` FOREIGN KEY (`PERSONID`) REFERENCES `persons` (`PERSONID`);

As we can see, every table contains the direct properties as defined by the corresponding Java bean class.
Additionally, the authors and employees tables are created with a foreign key constraing for the
PERSONID column refering to to the PERSONID column from the persons table.

3.4. Write the View and Controller Code
The user interface (UI) is very similar with the one for the Book hierarchy shown earlier in this
tutorial. For every Java bean class, we have a controller class which contains the add, update and
destroy CRUD methods. The PersonController class is defined as abstract and contains the
checkPersonIdAsId method, which is common to all subclasses. The AuthorController and
EmployeeController inherits the PersonController.

For every non-abstract entity class in the inheritance hierarchy we define a set of views corresponding to
CRUD operations. For example, in the case of Author we have WebContent/views/authors/

Subtyping in a Java
Back-End App

21

{listAll, create, update, destroy}.xhtml files. In the case of Employee, the List
All Employees test case require to display the Special type of employee column:

<h:column>
 <f:facet name="header">Special type of employee</f:facet>
 #{e.type != null ? e.type.label.concat(" of ").concat(e.department).concat(" department") : ""}
</h:column>

It is interesting to notice that within JSF expressions we can' use the + (plus) operator to concatenate
Java strings. JSF EL expression allows the + operator to be used only with number types. However, we
can use the concat method available to any String object.

The Create, Update and Delete test cases for both cases, Author and Employee are similar whith
what we have learned in this tutorial as well as in the Part 1 to 5 tutorials.

4. Run the App and Get the Code
Running your application is simple. First stop (if already started, otherwise skip this part) your Tomcat/
TomEE server by using bin/shutdown.bat for Windows OS or bin/shutdown.sh for Linux.
Next, download and unzip the ZIP archive file [SubtypingApp.zip] containing all the source code of
the application and also the ANT script file which you have to edit and modify the server.folder
property value. Now, execute the following command in your console or terminal: ant deploy -
Dappname=subtypingapp. Last, start your Tomcat web server (by using bin/startup.bat for
Windows OS or bin/startup.sh for Linux). Please be patient, this can take some time depending
on the speed of your computer. It will be ready when the console display the following info: INFO:
Initializing Mojarra [some library versions and paths are shonw
here] for context '/subtypingapp'. Finally, open a web browser and type: http://
localhost:8080/subtypingapp/faces/views/app/index.xhtml

You may want to download the ZIP archive [lib.jar] containing all the dependency libaries, or run
the subtyping app [http://yew.informatik.tu-cottbus.de/tutorials/java/subtypingapp/] directly from our
server.

SubtypingApp.zip
SubtypingApp.zip
lib.jar
lib.jar
http://yew.informatik.tu-cottbus.de/tutorials/java/subtypingapp/
http://yew.informatik.tu-cottbus.de/tutorials/java/subtypingapp/
http://yew.informatik.tu-cottbus.de/tutorials/java/subtypingapp/

	Java Back-End Web App Tutorial Part 6: Inheritance in Class Hierarchies
	Table of Contents
	Foreword
	Chapter 1. Subtyping and Inheritance
	1. Introducing Subtypes by Specialization
	2. Introducing Supertypes by Generalization
	3. Intension versus Extension
	4. Type Hierarchies
	5. The Class Hierarchy Merge Design Pattern
	6. Subtyping and Inheritance in Computational Languages
	6.1. Subtyping and Inheritance with OOP Classes
	6.2. Subtyping and Inheritance with Database Tables
	6.2.1. Single Table Inheritance
	6.2.2. Joined Tables Inheritance

	Chapter 2. Subtyping in a Java Back-End App
	1. Subtyping in Java
	2. Case Study 1: Eliminating a Class Hierarchy with Single Table Inheritance
	2.1. Make the Java Entity class model
	2.2. New issues
	2.3. Code the classes of the Java Entity class model
	2.3.1. Summary
	2.3.2. Code the enumeration type BookTypeEL
	2.3.2.1. Code the model classes

	2.4. Database schema for single table class hierarchy
	2.5. Write the View and Controller Code
	2.5.1. Summary
	2.5.2. Adding a segment information column in "List all books"
	2.5.3. Adding a "Special type" select control in "Create book" and "Update book"

	3. Case Study 2: Implementing a Class Hierarchy with Joined Table Inheritance
	3.1. Make the Java Entity class model
	3.2. New issues
	3.3. Code the model classes of the Java Entity class model
	3.3.1. Define the category relationships
	3.3.2. Database schema for joined table class hierarchy

	3.4. Write the View and Controller Code

	4. Run the App and Get the Code

